

Table of Contents: Overview
About This Book Sample 4...
About This Book Sample 4...
What You Need 10..
Book License 11..
Chapter 1: Introduction 12..
Chapter 2: GCD & Operations 15..................................
Chapter 3: Queues & Threads 20.................................
Where to Go From Here? 30...

Concurrency by Tutorials Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4.
About This Book Sample 4.

About the Author 8.
About the Editors 8.
About the Artist 9.

What You Need 10.
Book License 11.
Chapter 1: Introduction 12.

What is concurrency? 12.
Why use concurrency? 12.
How to use concurrency 13.
Where to go from here? 14.

Chapter 2: GCD & Operations 15.
Grand Central Dispatch 15.
Operations 17.
Which should you use? 18.

Chapter 3: Queues & Threads 20.
Threads 20.
Dispatch queues 21.
Image loading example 25.
Where to go from here? 28.

Where to Go From Here? 30.

Concurrency by Tutorials Sample

raywenderlich.com 3

AAbout This Book SampleAAbout This Book Sample

Welcome to Concurrency by Tutorials!

Building a modern iOS, macOS or tvOS app is absolutely a bliss these days, especially
with the prevalence of Swift as the recommended language by Apple. But as our apps
become larger and performance becomes more and more critical to our app's
consumers, learning how to efficiently utilize concurrency in your apps is one of the
most important things you could do.

Concurrency is the concept of multiple things, or pieces of work, running at the same
time. With the addition of CPU cores in our devices, knowing how to properly utilize
your customer's hardware to the maximum is absolutely a must. Unfortunately, proper
concurrency in iOS apps is one of the lesser-known, lower-level topics, that every
developer wants to (and should) understand properly, but is usually intimidated by.

This is where Concurrency by Tutorials comes to the rescue! In this book, you’ll learn
everything there is to know about how to write performant and concurrent code for
your iOS apps.

We are pleased to offer you this sample from the full Concurrency by Tutorials book that
will introduce you to these concepts and give you a chance to practice them in our
hands-on By Tutorials style.

This sample includes:

Chapter 1: Introduction: Get a quick overview of what concurrency is and why you
might want to use it.

Chapter 2: GCD vs. Operations: GCD vs.Operations: Concurrency can be handled by
either Grand Central Dispatch (GCD) or Operations. Learn about the differences
between the two and why you might choose one over the other.

raywenderlich.com 4

Chapter 3: Queues & Threads: This chapter teaches you how to use a GCD queue to
offload work from the main thread. You'll also learn what a "thread" is.

The book is ready for purchase at:

• https://store.raywenderlich.com/products/concurrency-by-tutorials.

Enjoy!

The Concurrency by Tutorials Team

Concurrency by Tutorials Sample About This Book Sample

raywenderlich.com 5

Concurrency by Tutorials
By Scott Grosch

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Concurrency by Tutorials Sample About This Book Sample

raywenderlich.com 6

Dedications
"This book is dedicated to my wife and daughter, as well as to my
parents who always made sure a good education was a priority."

— Scott Grosch

Concurrency by Tutorials Sample About This Book Sample

raywenderlich.com 7

About the Author
Scott Grosch is the author of this book. He has been involved with
iOS app development since the first release of the public SDK from
Apple. He mostly works with a small set of clients on a couple large
apps. During the day, Scott is a Solutions Architect at a Fortune 500
company in the Pacific Northwest. At night, he's still working on
figuring out how to be a good parent to a toddler with his wife.

About the Editors
Marin Bencevic is the tech editor of this book. He is a Swift and
Unity developer who likes to work on cool iOS apps and games, nerd
out about programming, learn new things and then blog about it.
Mostly, though, he just causes SourceKit crashes. He also has a
chubby cat.

Shai Mishali is the Final Pass Editor of this book. He's the iOS Tech
Lead for Gett, the global on-demand mobility company; as well as an
international speaker, and a highly active open-source contributor
and maintainer on several high-profile projects - namely, the RxSwift
Community and RxSwift projects. As an avid enthusiast of
hackathons, Shai took 1st place at BattleHack Tel-Aviv 2014,
BattleHack World Finals San Jose 2014, and Ford's Developer
Challenge Tel-Aviv 2015. You can find him on GitHub and Twitter
@freak4pc.

Manda Frederick is the editor of this book. She has been involved in
publishing for over 10 years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

Concurrency by Tutorials Sample About This Book Sample

raywenderlich.com 8

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Concurrency by Tutorials Sample About This Book Sample

raywenderlich.com 9

WWhat You Need

To follow along with this book, you'll need the following:

• A Mac running macOS Mojave (10.14) or later. Earlier versions might work, but
they're untested.

• Xcode 10.1 or later. Xcode is the main development tool for iOS. You'll need Xcode
10.1 or later for the tasks in this book. You can download the latest version of Xcode
from Apple's developer site here: apple.co/2asi58y

• An intermediate level knowledge of Swift. This book teaches concurrency when
building iOS applications using Swift. You could use the knowledge acquired in this
book for your Objective-C codebase, but this book won't include any Objective-C
examples. You could also use this knowledge for your macOS, tvOS and watchOS
apps, but like Objective-C, this book won't include any examples for these platforms.

If you want to try things out on a physical iOS device, you’ll need a developer account
with Apple, which you can obtain for free. However, all the sample projects in this book
will work just fine in the iOS Simulator bundled with Xcode, so the paid developer
account is completely optional.

raywenderlich.com 10

LBook License

By purchasing Concurrency by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Concurrency by Tutorials in
as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Concurrency by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from
Concurrency by Tutorials, available at www.raywenderlich.com”.

• The source code included in Concurrency by Tutorials is for your personal use only.
You are NOT allowed to distribute or sell the source code in Concurrency by Tutorials
without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action or contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 11

1Chapter 1: Introduction

Performance. Responsiveness. They're not sexy tasks. When done properly, nobody is
going to thank you. When done incorrectly, app retention is going to suffer and you'll
be dinged during your next yearly performance review.

There are a multitude of ways in which an app can be optimized for speed, performance
and overall responsiveness. This book will focus on the topic of concurrency.

What is concurrency?
Wikipedia defines concurrency as "the decomposability property of a program,
algorithm, or problem into order-independent or partially-ordered components or
units." What this means is looking at the logic of your app to determine which pieces
can run at the same time, and possibly in a random order, yet still result in a correct
implementation of your data flow.

Moderns devices almost always have more than a single CPU, and Apple's iPhones have
been dual core since 2011. Having more than one core means they are capable of
running more than a single task at the same time. By splitting your app into logical
"chunks" of code you enable the iOS device to run multiple parts of your program at the
same time, thus improving overall performance.

Why use concurrency?
It's critical to ensure that your app runs as smoothly as possible and that the end user is
not ever forced to wait for something to happen. A second is a minuscule amount of
time for most everything not related to a computer. However, if a human has to wait a

raywenderlich.com 12

second to see a response after taking an action on a device like an iPhone, it feels like
an eternity. "It's too slow" is one of the main contributors to your app being uninstalled.

Scrolling through a table of images is one of the more common situations wherein the
end user will be impacted by the lack of concurrency. If you need to download an image
from the network, or perform some type of image processing before displaying it, the
scrolling will stutter and you'll be forced to display multiple "busy" indicators instead of
the expected image.

A beneficial side effect to using concurrency is that it helps you to spend a bit more
time thinking about your app's overall architecture. Instead of just writing massive
methods to "get the job done" you'll find yourself naturally writing smaller, more
manageable methods that can run concurrently.

How to use concurrency
That's the focus of this book! At a high level you need to structure your app so that
some tasks can run at the same time. Multiple tasks that modify the same resource (i.e.,
variable) can't run at the same time, unless you make them thread safe.

Tasks which access different resources, or read-only shared resources, can all be
accessed via different threads to allow for much faster processing.

This book will focus on the two main ways that iOS provides you with the ability to run
code concurrently. The first section on Grand Central Dispatch will cover the common
scenarios where you will find yourself being able to implement concurrency. You'll
learn how to run tasks in the background, how to group tasks together and how to
handle restricting the number of tasks that can run at once. By the end of the first
section you'll also have a strong grasp of the dangers of concurrency and how to avoid
them.

In the second section you'll focus on the Operation class. Built on top of Grand Central
Dispatch, operations allow for the handling of more complex scenarios such as reusable
code to be run on a background thread, having one thread depend on another, and even
canceling an operation before it's started or completed.

Most modern programming languages provide for some form of concurrency and Swift
is of course no exception. Different languages use widely different mechanisms for
handling concurrency. C# and Typescript, for example use an async/await pattern,
whereas Swift uses closures to handle what runs on another thread. Swift 5 originally
had plans to implement the more common async/await pattern but it was removed from
the specification until the next release.

Concurrency by Tutorials Sample Chapter 1: Introduction

raywenderlich.com 13

Where to go from here?
Well to the next page of course! Hopefully as you work through the following chapters
you'll gain an appreciation for what concurrency can do for your app and why your end
users will appreciate the extra effort you put into making the app perform as fast as
possible. Knowing when to use Grand Central Dispatch as opposed to an Operation
subclass early in the app lifecycle will save you hours of rework down the road.

Concurrency by Tutorials Sample Chapter 1: Introduction

raywenderlich.com 14

2Chapter 2: GCD &
Operations

There are two APIs that you'll use when making your app concurrent: Grand Central
Dispatch, commonly referred to as GCD, and Operations. These are neither competing
technologies nor something that you have to exclusively pick between. In fact,
Operations are built on top of GCD!

Grand Central Dispatch
GCD is Apple's implementation of C's libdispatch library. Its purpose is to queue up
tasks — either a method or a closure — that can be run in parallel, depending on
availability of resources; it then executes the tasks on an available processor core.

Note: Apple's documentation sometimes refers to a block in lieu of closure, since
that was the name used in Objective-C. You can consider them interchangeable in
the context of concurrency.

While GCD uses threads in its implementation, you, as the developer, do not need to
worry about managing them yourself. GCD's tasks are so lightweight to enqueue that
Apple, in its 2009 technical brief on GCD, stated that only 15 instructions are required
for implementation, whereas creating traditional threads could require several hundred
instructions.

All of the tasks that GCD manages for you are placed into GCD-managed first-in, first-
out (FIFO) queues. Each task that you submit to a queue is then executed against a pool
of threads fully managed by the system.

raywenderlich.com 15

Note: There is no guarantee as to which thread your task will execute against.

Synchronous and asynchronous tasks
Work placed into the queue may either run synchronously or asynchronously. When
running a task synchronously, your app will wait and block the current run loop until
execution finishes before moving on to the next task. Alternatively, a task that is run
asynchronously will start, but return execution to your app immediately. This way, the
app is free to run other tasks while the first one is executing.

Note: It's important to keep in mind that, while the queues are FIFO based, that
does not ensure that tasks will finish in the order you submit them. The FIFO
procedure applies to when the task starts, not when it finishes.

In general, you'll want to take any long-running non-UI task that you can find and
make it run asynchronously in the background. GCD makes this very simple via closures
with a few lines of code, like so:

// Class level variable
let queue = DispatchQueue(label: "com.raywenderlich.worker")

// Somewhere in your function
queue.async {
 // Call slow non-UI methods here

 DispatchQueue.main.async {
 // Update the UI here
 }
}

You'll learn all about DispatchQueue in Chapter 3, "Queues & Threads." In general, you
create a queue, submit a task to it to run asynchronously on a background thread, and,
when it's complete, you delegate the code back to the main thread to update the UI.

Serial and concurrent queues
The queue to which your task is submitted also has a characteristic of being either
serial or concurrent. Serial queues only have a single thread associated with them and
thus only allow a single task to be executed at any given time. A concurrent queue, on
the other hand, is able to utilize as many threads as the system has resources for.
Threads will be created and released as necessary on a concurrent queue.

Concurrency by Tutorials Sample Chapter 2: GCD & Operations

raywenderlich.com 16

Note: While you can tell iOS that you'd like to use a concurrent queue, remember
that there is no guarantee that more than one task will run at a time. If your iOS
device is completely bogged down and your app is competing for resources, it may
only be capable of running a single task.

Asynchronous doesn't mean concurrent
While the difference seems subtle at first, just because your tasks are asynchronous
doesn't mean they will run concurrently. You're actually able to submit asynchronous
tasks to either a serial queue or a concurrent queue. Being synchronous or
asynchronous simply identifies whether or not the queue on which you're running the
task must wait for the task to complete before it can spawn the next task.

On the other hand, categorizing something as serial versus concurrent identifies whether
the queue has a single thread or multiple threads available to it. If you think about it,
submitting three asynchronous tasks to a serial queue means that each task has to
completely finish before the next task is able to start as there is only one thread
available.

In other words, a task being synchronous or not speaks to the source of the task. Being
serial or concurrent speaks to the destination of the task.

Operations
GCD is great for common tasks that need to be run a single time in the background.
When you find yourself building functionality that should be reusable — such as image
editing operations — you will likely want to encapsulate that functionality into a class.
By subclassing Operation, you can accomplish that goal!

Operation subclassing
Operations are fully-functional classes that can be submitted to an OperationQueue,
just like you'd submit a closure of work to a DispatchQueue for GCD. Because they're
classes and can contain variables, you gain the ability to know what state the operation
is in at any given point.

Operations can exist in any of the following states:

• isReady

• isExecuting

Concurrency by Tutorials Sample Chapter 2: GCD & Operations

raywenderlich.com 17

• isCancelled

• isFinished

Unlike GCD, an operation is run synchronously by default, and getting it to run
asynchronously requires more work. While you can directly execute an operation
yourself, that's almost never going to be a good idea due to its synchronous nature.
You'll want to get it off of the main thread by submitting it to an OperationQueue so
that your UI performance isn't impacted.

Bonus features
But wait, there's more! Operations provide greater control over your tasks as you can
now handle such common needs as cancelling the task, reporting the state of the task,
wrapping asynchronous tasks into an operation and specifying dependences between
various tasks. Chapter 6, "Operations," will provide a more in-depth discussion of using
operations in your app.

BlockOperation
Sometimes, you find yourself working on an app that heavily uses operations, but find
that you have a need for a simpler, GCD-like, closure. If you don't want to also create a
DispatchQueue, then you can instead utilize the BlockOperation class.

BlockOperation subclasses Operation for you and manages the concurrent execution of
one or more closures on the default global queue. However, being an actual Operation
subclass lets you take advantage of all the other features of an operation.

Note: Block operations run concurrently. If you need them to run serially, you'll
need to setup a dispatch queue instead.

Which should you use?
There's no clear-cut directive as to whether you should use GCD or Operations in your
app. GCD tends to be simpler to work with for simple tasks you just need to execute and
forget. Operations provide much more functionality when you need to keep track of a
job or maintain the ability to cancel it.

If you're just working with methods or chunks of code that need to be executed, GCD is
a fitting choice. If you're working with objects that need to encapsulate data and
functionality then you're more likely to utilize Operations. Some developers even go to

Concurrency by Tutorials Sample Chapter 2: GCD & Operations

raywenderlich.com 18

the extreme of saying that you should always use Operations because it's built on top of
GCD, and Apple's guidance says to always use the highest level of abstraction provided.

At the end of the day, you should use whichever technology makes the most sense at
the time and provides for the greatest long-term sustainability of your project, or
specific use-case.

In the next chapter, you'll take a deep dive into how Grand Central Dispatch works,
learn about the difference between threads and queues, and identify some of the
complexities that can occur when implementing concurrency in your app.

Concurrency by Tutorials Sample Chapter 2: GCD & Operations

raywenderlich.com 19

3Chapter 3: Queues &
Threads

Dispatch queues and threads have been mentioned a couple of times now, and you're
probably wondering what they are at this point. In this chapter, you'll get a much
deeper understanding of what Dispatch queue and Threads are, and how to best
incorporate them in your development workflow.

Threads
You've probably heard the term multithreading at some point, yes? A thread is really
short for thread of execution, and it's how a running process splits tasks across
resources on the system. Your iOS app is a process that runs multiple tasks by utilizing
multiple threads. You can have as many threads executing at once as you have cores in
your device's CPU.

There are many advantages to splitting your app's work into multiple threads:

• Faster execution: By running tasks on threads, it's possible for work to be done
concurrently, which will allow it to finish faster than running everything serially.

• Responsiveness: If you only perform user-visible work on the main UI thread, then
users won't notice that the app slows down or freezes up periodically due to work
that could be performed on another thread.

• Optimized resource consumption: Threads are highly optimized by the OS.

Sounds great, right? More cores, more threads, faster app. I bet you're ready to learn
how to create one, right? Too bad! In reality, you should never find yourself needing to
create a thread explicitly. The OS will handle all thread creation for you using higher
abstractions.

raywenderlich.com 20

Apple provides the APIs necessary for thread management, but if you try to directly
manage them yourself, you could in fact degrade, rather than improve, performance.
The OS keeps track of many statistics to know when it should and should not allocate
or destroy threads. Don't fool yourself into thinking it's as simple as spinning up a
thread when you want one. For those reasons, this book will not cover direct thread
management.

Dispatch queues
The way you work with threads is by creating a DispatchQueue. When you create a
queue, the OS will potentially create and assign one or more threads to the queue. If
existing threads are available, they can be reused; if not, then the OS will create them
as necessary.

Creating a dispatch queue is pretty simple on your part, as you can see in the example
below:

let label = "com.razeware.mycoolapp.networking"
let queue = DispatchQueue(label: label)

Phew, fairly easy, eh? Normally, you'd put the text of the label directly inside the
initializer, but it's broken into separate statements for the sake of brevity.

The label argument simply needs to be any unique value for identification purposes.
While you could simply use a UUID to guarantee uniqueness, it's best to use a reverse-
DNS style name, as shown above (e.g. com.company.app), since the label is what you'll
see when debugging and it's helpful to assign it meaningful text.

The main queue
When your app starts, a main dispatch queue is automatically created for you. It's a
serial queue that's responsible for your UI. Because it's used so often, Apple has made it
available as a class variable, which you access via DispatchQueue.main. You never want
to execute something synchronously against the main queue, unless it's related to
actual UI work. Otherwise, you'll lock up your UI which could potentially degrade your
app performance.

If you recall from the previous chapter, there are two types of dispatch queues: serial or
concurrent. The default initializer, as shown in the code above, will create a serial queue
wherein each task must complete before the next task is able to start.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 21

In order to create a concurrent queue, simply pass in the .concurrent attribute, like so:

let label = "com.razeware.mycoolapp.networking"
let queue = DispatchQueue(label: label, attributes: .concurrent)

Concurrent queues are so common that Apple has provided six different global
concurrent queues, depending on the Quality of service (QoS) the queue should have.

Quality of service
When using a concurrent dispatch queue, you'll need to tell iOS how important the
tasks are that get sent to the queue so that it can properly prioritize the work that
needs to be done against all the other tasks that are clamoring for resources. Remember
that higher-priority work has to be performed faster, likely taking more system
resources to complete and requiring more energy than lower-priority work.

If you just need a concurrent queue but don't want to manage your own, you can use
the global class method on DispatchQueue to get one of the pre-defined global queues:

let queue = DispatchQueue.global(qos: .userInteractive)

As mentioned above, Apple offers six quality of service classes:

.userInteractive
The .userInteractive QoS is recommended for tasks that the user directly interacts
with. UI-updating calculations, animations or anything needed to keep the UI
responsive and fast. If the work doesn't happen quickly, things may appear to freeze.
Tasks submitted to this queue should complete virtually instantaneously.

.userInitiated
The .userInitiated queue should be used when the user kicks off a task from the UI
that needs to happen immediately, but can be done asynchronously. For example, you
may need to open a document or read from a local database. If the user clicked a
button, this is probably the queue you want. Tasks performed in this queue should take
a few seconds or less to complete.

.utility
You'll want to use the .utility dispatch queue for tasks that would typically include a
progress indicator such as long-running computations, I/O, networking or continuous
data feeds. The system tries to balance responsiveness and performance with energy
efficiency. Tasks can take a few seconds to a few minutes in this queue.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 22

.background
For tasks that the user is not directly aware of you should use the .background queue.
They don't require user interaction and aren't time sensitive. Prefetching, database
maintenance, synchronizing remote servers and performing backups are all great
examples. The OS will focus on energy efficiency instead of speed. You'll want to use
this queue for work that will take significant time, on the order of minutes or more.

.default and .unspecified
There are two other possible choices that exist, but you should not use explicitly.
There's a .default option, which falls between .userInitiated and .utility and is the
default value of the qos argument. It's not intended for you to directly use. The second
option is .unspecified, and exists to support legacy APIs that may opt the thread out of
a quality of service. It's good to know they exist, but if you're using them, you're almost
certainly doing something wrong.

Note: Global queues are always concurrent and first-in, first-out.

Inferring QoS
If you create your own concurrent dispatch queue, you can tell the system what the QoS
is via its initializer:

let queue = DispatchQueue(label: label,
 qos: .userInitiated,
 attributes: .concurrent)

However, this is like arguing with your spouse/kids/dogs/pet rock: Just because you say
it doesn't make it so! The OS will pay attention to what type of tasks are being
submitted to the queue and make changes as necessary.

If you submit a task with a higher quality of service than the queue has, the queue's
level will increase. Not only that, but all the operations enqueued will also have their
priority raised as well.

If the current context is the main thread, the inferred QoS is .userInitiated. You can
specify a QoS yourself, but as soon as you'll add a task with a higher QoS, your queue's
QoS service will be increased to match it.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 23

Adding task to queues
Dispatch queues provide both sync and async methods to add a task to a queue.
Remember that, by task, I simply mean, "Whatever block of code you need to run." When
your app starts, for example, you may need to contact your server to update the app's
state. That's not user initiated, doesn't need to happen immediately and depends on
networking I/O, so you should send it to the global utility queue:

DispatchQueue.global(qos: .utility).async { [weak self] in
 guard let self = self else { return }

 // Perform your work here
 // ...

 // Switch back to the main queue to
 // update your UI
 DispatchQueue.main.async {
 self.textLabel.text = "New articles available!"
 }
}

There are two key points you should take away from the above code sample. First,
there's nothing special about a DispatchQueue that nullifies the closure rules. You still
need to make sure that you're properly handling the closure's captured variables, such
as self, if you plan to utilize them.

Strongly capturing self in a GCD async closure will not cause a reference cycle (e.g. a
retain cycle) since the whole closure will be deallocated once it's completed, but it will
extend the lifetime of self. For instance, if you make a network request from a view
controller that has been dismissed in the meantime, the closure will still get called. If
you capture the view controller weakly, it will be nil. However, if you capture it
strongly, the view controller will remain alive until the closure finishes its work. Keep
that in mind and capture weakly or strongly based on your needs.

Second, notice how updates to the UI are dispatched to the main queue inside the
dispatch to the background queue. It's not only OK, but very common, to nest async
type calls inside others.

Note: You should never perform UI updates on any queue other than the main
queue. If it's not documented what queue an API callback uses, dispatch it to the
main queue!

Use extreme caution when submitting a task to a dispatch queue synchronously. If you
find yourself calling the sync method, instead of the async method, think once or twice
whether that's really what you should be doing. If you submit a task synchronously to

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 24

the current queue, which blocks the current queue, and your task tries to access a
resource in the current queue, then your app will deadlock, which is explained more in
Chapter 5, "Concurrency Problems." Similarly, if you call sync from the main queue,
you'll block the thread that updates the UI and your app will appear to freeze up.

Note: Never call sync from the main thread, since it would block your main thread
and could even potentially cause a deadlock.

Image loading example
You've been inundated with quite a bit of theoretical concepts at this point. Time to see
an actual example!

In the downloadable materials for this book, you'll find a starter project for this chapter.
Open up the Concurrency.xcodeproj project. Build and run the app. You'll see some
images slowly load from the network into a UICollectionView. If you try to scroll the
screen while the images are loading, either nothing will happen or the scrolling will be
very slow and choppy, depending on the speed of the device you are using.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 25

Open up CollectionViewController.swift and take a look at what's going on. When the
view loads, it just grabs a static list of image URLs to be displayed. In a production app,
of course, you'd likely be making a network call at this point to generate a list of items
to display, but for this example it's easier to hardcode a list of images.

The collectionView(_:cellForItemAt:) method is where the trouble happens. You can
see that when a cell is ready to be displayed a call is made via one of Data's constructors
to download the image and then it's assigned to the cell. The code looks simple enough,
and it is what most starting iOS developers would do to download an image, but you
saw the results: a choppy, underperforming UI experience!

Unless you slept through the previous pages of explanation, you know by now that the
work to download the image, which is a network call, needs to be done on a separate
thread from the UI.

Mini-challenge: Which queue do you think should handle the image download?
Take a look back a few pages and make your decision.

Did you pick either .userInteractive or .userInitiated? It's tempting to do because
the end result is directly visible to the user but the reality is if you used that logic then
you'd never use any other queue. The proper choice here is to use the .utility queue.
You've got no control over how long a network call will take to complete and you want
the OS to properly balance the speed vs. battery life of the device.

Using a global queue
Create a new method in CollectionViewController that starts off like so:

private func downloadWithGlobalQueue(at indexPath: IndexPath) {
 DispatchQueue.global(qos: .utility).async { [weak self] in
 }
}

You'll eventually call this from collectionView(_:cellForItemAt:) to perform the
actual image processing. Begin by determining which URL should be loaded. Since the
list of URLs are part of self, you'll need to handle normal closure capture semantics.
Add the following code inside the async closure:

guard let self = self else {
 return
}

let url = self.urls[indexPath.item]

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 26

Once you know the URL to load, you can use the same Data initializer you previously
used. Even though it's an synchronous operation that's being performed, it is running
on a separate thread and thus the UI isn't impacted. Add the following to the end of the
closure:

guard let data = try? Data(contentsOf: url),
 let image = UIImage(data: data) else {
 return
}

Now that you've successfully downloaded the contents of the URL and turned it into a
UIImage, it's time to apply it to the collection view's cell. Remember that updates to the
UI can only happen on the main thread! Add this async call to the end of the closure:

DispatchQueue.main.async {
 if let cell = self.collectionView.cellForItem(at: indexPath) as?
PhotoCell {
 cell.display(image: image)
 }
}

Notice that the bare minimum of code is being sent back to the main thread. Do every
bit of work that you can before dispatching to the main queue so that your UI remains
as responsive as possible. Is the cell assignment confusing you? Why not just pass the
actual PhotoCell to this method instead of an IndexPath?

Consider the nature of what you're doing here. You've offloaded the configuration of
the cell to an asynchronous process. While the network download is occurring, the user
is very likely doing something with your app. In the case of a UITableView or
UICollectionView, that probably means that they're doing some scrolling. By the time
the network call finishes, the cell might have been reused for another image, or it might
have been disposed of completely. By calling cellForItem(at:), you're grabbing the cell
at the time you're ready to update it. If it still exists and if it's still on the screen, then
you'll update the display. If it's not, then nil will be returned.

Had you instead simply passed in a PhotoCell and directly interacted with that object,
you'd have discovered that random images are placed in random cells, and you'll see the
same image repeated multiple times as you scroll around.

Now that you've got a proper image download and cell configuration method, update
collectionView(_:cellForItemAt:) to call it. Replace everything in-between creating
and returning the cell with these two lines of code:

cell.display(image: nil)
downloadWithGlobalQueue(at: indexPath)

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 27

Using built-in methods
You can see how simple the above changes were to vastly improve the performance of
your app. However, it's not always necessary to grab a dispatch queue yourself. Many of
the standard iOS libraries handle that for you. Add the following method to
CollectionViewController:

private func downloadWithUrlSession(at indexPath: IndexPath) {
 URLSession.shared.dataTask(with: urls[indexPath.item]) {
 [weak self] data, response, error in

 guard let self = self,
 let data = data,
 let image = UIImage(data: data) else {
 return
 }

 DispatchQueue.main.async {
 if let cell = self.collectionView
 .cellForItem(at: indexPath) as? PhotoCell {
 cell.display(image: image)
 }
 }
 }.resume()
}

Notice how, this time, instead of getting a dispatch queue, you directly used the
dataTask method on URLSession. The code is almost the same, but it handles the
download of the data for you so that you don't have to do it yourself, nor do you need to
grab a dispatch queue. Always prefer to use the system provided methods when they are
available as it will make your code not only more future-proof but easier to read for
other developers. A junior programmer might not understand what the dispatch queues
are, but they understand making a network call.

If you call downloadWithUrlSession(at:) instead of downloadWithGlobalQueue(at:) in
collectionView(_:cellForItemAt:) you should see the exact same result after building
and running your app again.

Where to go from here?
At this point, you should have a good grasp of what dispatch queues are, what they're
used for and how to use them. Play around with the code samples from above to ensure
you understand how they work.

Consider passing the PhotoCell into the download methods instead of just passing in
the IndexPath to see a common type of bug in practice.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 28

The sample app is of course somewhat contrived so as to easily showcase how a
DispatchQueue works. There are many other performance improvements that could be
made to the sample app but those will have to wait for Chapter 7, "Operation Queues."

Now that you've seen the benefits, the next chapter will introduce you to the dangers of
implementing concurrency in your app.

Concurrency by Tutorials Sample Chapter 3: Queues & Threads

raywenderlich.com 29

WWhere to Go From Here?

We hope you enjoyed this sample of Concurrency by Tutorials!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

• Chapter 1: Introdction: Get a quick overview of what concurrency is and why you
might want to use it.

• Chapter 2: GCD vs.Operations: Concurrency can be handled by either Grand Central
Dispatch (GCD) or Operations. Learn about the differences between the two and why
you might choose one over the other.

• Chapter 3: Queues & Threads: This chapter teaches you how to use a GCD queue to
offload work from the main thread. You'll also learn what a "thread" is.

• Chapter 4: Groups & Semaphores: In the previous chapter you learned about how
queues work. In this chapter you'll expand that knowledge to learn how to submit
multiple tasks to a queue which need to run together as a "group" so that you can be
notified when they have all completed. You'll also learn how to wrap an existing API
so that you can call it asynchronously.

• Chapter 5: Concurrency Problems: By now you know how GCD can make your app so
much fater. This chapter will show you some of the dangers of concurrency if you're
not careful, and how to avoid them.

• Chapter 6: Operations: In this chapter you'll switch gears and start learning about
the Operations class, which allows for much more powerful control over your
concurrent tasks.

raywenderlich.com 30

• Chapter 7: Operation Queues: Similar to the Dispatch Queues you learned about
back in chapter 3, the Operation class uses an OperationQueue to perform a similar
function.

• Chapter 8: Asynchronous Operations: Now that you can create an Operation and
submit it to a queue, you'll learn how to make the operation itself asynchronous.
While not something you'll do regularly, it's important to know that it's possible.

• Chapter 9: Operation Dependencies: The "killer feature" of Operations is being able
to tell the OS that one operation is dependant on another and shouldn't being until
the dependency has finished.

• Chapter 10: Canceling Operations: There are times when you need to stop an
operation that is running, or has yet to start. This chapter will teach you the
concepts that you need to be aware of to support cancelation.

• Chapter 11: Core Data: Core Data works well with concurrency as long as you keep a
few simple rules in mind. This chapter will teach you how to make sure that your
Core Data app is able to handle concurrency properly.

• Chapter 12: Thread Sanitizer: Data races occur when multiple threads access the
same memory without synchronization and at least one access is a write. This
chapter will teach you how to use Apple's Thread Sanitizer to detect data races.

We hope you enjoy the book!

— The Concurrency by Tutorials team

Concurrency by Tutorials Sample Where to Go From Here?

raywenderlich.com 31

	About This Book Sample
	About This Book Sample
	About the Author
	About the Editors
	About the Artist

	What You Need
	Book License
	Chapter 1: Introduction
	What is concurrency?
	Why use concurrency?
	How to use concurrency
	Where to go from here?

	Chapter 2: GCD & Operations
	Grand Central Dispatch
	Operations
	Which should you use?

	Chapter 3: Queues & Threads
	Threads
	Dispatch queues
	Image loading example
	Where to go from here?

	Where to Go From Here?

