

Table of Contents: Overview
About This Book Sample 5...
What You Need 12..
Book License 13...
Book Source Code & Forums 14...................................
Chapter 1: Hello, RxJava! 15...
Chapter 2: Observables 35..
Where to Go From Here? 53...

Reactive Programming with Kotlin Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 5.

About the Author 9.
About the Editors 9.
About the Artist 10.

What You Need 12.
Book License 13.
Book Source Code & Forums 14.
Chapter 1: Hello, RxJava! 15.

RxJava and RxKotlin 15.
Introduction to asynchronous programming 17.
Foundations of RxJava 24.
App architecture 31.
RxAndroid and RxBinding 32.
Installing RxJava 32.
Community 33.
Key points 34.
Where to go from here? 34.

Chapter 2: Observables 35.
Getting started 35.
What is an observable? 36.
Lifecycle of an observable 37.
Creating observables 38.
Subscribing to observables 39.
Disposing and terminating 43.
The create operator 44.
Creating observable factories 47.
Using other observable types 48.
Key points 51.

Reactive Programming with Kotlin Sample

raywenderlich.com 3

Challenges 51.

Where to Go From Here? 53.

Reactive Programming with Kotlin Sample

raywenderlich.com 4

AAbout This Book Sample

Welcome to Reactive Programming with Kotlin!

The popularity of reactive programming continues to grow on an ever-increasing
number of platforms and languages. Rx lets developers easily and quickly build apps
with code that can be understood by other Rx developers—even over different
platforms.

Not only will you learn how to use RxJava to create complex reactive applications on
Android, you'll also see how to solve common application design issues by using
RxJava. Finally, you'll discover how to exercise full control over the library and leverage
the full power of reactive programming in your apps.

We are pleased to offer you this sample from the full Reactive Programming with Kotlin
book that will introduce you to these concepts and give you a chance to practice them
in our hands-on By Tutorials style.

The chapters that follow come from the first section of the book, "Getting Started with
RxJava."

In this part of the book, you’re going to learn about the basics of RxJava. You are going
to have a look at what kinds of asynchronous programming problems RxJava addresses,
and what kind of solutions it offers.

Further, you will learn about the few basic classes that allow you to create and observe
event sequences, which are the foundation of the Rx framework.

You are going to start slow by learning about the basics and a little bit of theory. Please
don't skip these chapters! This will allow you to make good progress in the following
sections when things get more complex.

raywenderlich.com 5

This sample includes:

1. Hello RxJava!: Learn about the reactive programming paradigm and what RxJava
can bring to your app.

2. Observables: Now that you’re ready to use RxJava and have learned some of the
basic concepts, it’s time to play around with observables.

The book is ready for purchase at:

• https://store.raywenderlich.com/products/reactive-programming-with-kotlin.

Enjoy!

The Reactive Programming with Kotlins Team

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 6

Reactive Programming with Kotlin
By Alex Sullivan

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 7

Dedications
"To my wonderful partner Pallavi, without whom I would have never
been able to start this undertaking. Your support and encouragement

mean the world to me."

— Alex Sullivan

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 8

About the Author
Alex Sullivan is an author of this book. Alex is a mobile developer
who works at Thoughtbot in Boston, where he enjoys reactive
programming, experimenting with different programming languages,
and tinkering with fun approaches to building mobile applications. In
his spare time, Alex enjoys traveling and relaxing with his partner,
binging unhealthy amounts of Netflix and reading. Alex hopes to one
day find a cat he's not allergic to and rant about bracket placement to
him or her.

About the Editors
Joe Howard is the final pass editor for this book. Joe is a former
physicist that studied computational particle physics using parallel
Fortran simulations. He gradually shifted into systems engineering
and then ultimately software engineering around the time of the
release of the iOS and Android SDKs. He's been a mobile software
developer on iOS and Android since 2009, working primarily at two
agencies in Boston, MA since 2011. He's now the Pillar Lead for
raywenderlich.com. Twitter: @orionthewake.

Manda Frederick is the editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

Victoria Gonda is a tech editor for this book. Victoria is a software
developer working mostly on Android apps. when she's not traveling
to speak at conferences, she works remotely from Chicago. Her
interest in tech started while studying computer science and dance
production in college. In her spare time, you can find Victoria
relaxing with a book, her partner, and her pets. You can connect with
her on Twitter at @TTGonda.

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 9

Ellen Shapiro is a tech editor for this book. Ellen is an iOS developer
for Bakken & Bæck's Amsterdam office who also occasionally writes
Android apps. She is working in her spare time to help bring
songwriting app Hum to life. She’s also developed several
independent applications through her personal company, Designated
Nerd Software. When she's not writing code, she's usually tweeting
about it.

Amanjeet Singh is a tech editor for this book. Amanjeet is an
Android Engineer in Delhi, India and an open source enthusiast. As a
developer he always tries to build apps with optimized performance
and good architectures which can be used on a large scale. Currently
Android Engineer at 1mg, he helps in building apps for one of the
leading healthcare platform in India. Also a technical editor and
author in android team at raywenderlich.com.

Matei Suica is a tech editor for this book. Matei is a software
developer that dreams about changing the world with his work. From
his small office in Romania, Matei is trying to create an App that will
help millions. When the laptop lid closes, he likes to go to the gym
and read. You can find him on Twitter or LinkedIn: @mateisuica

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 10

Acknowldegments
We'd also like to thank the RxSwift: Reactive Programming with Swift authors, whose
work served as the basis for parts of this book:

• Florent Pillet has been developing for mobile platforms since the last century and
moved to iOS on day 1. He adopted reactive programming before Swift was
announced and has been using RxSwift in production since 2015. A freelance
developer, Florent also uses Rx on Android and likes working on tools for developers
like the popular NSLogger when he's not contracting for clients worldwide. Say hello
to Florent on Twitter at @fpillet.

• Junior Bontognali has been developing on iOS since the first iPhone and joined the
RxSwift team in the early development stage. Based in Switzerland, when he's not
eating cheese or chocolate, he's doing some cool stuff in the mobile space, without
denying to work on other technologies. Other than that he organizes tech events,
speaks and blogs. Say hello to Junior on Twitter at @bontoJR.

• Marin Todorov is one of the founding members of the raywenderlich.com team and
has worked on seven of the team's books. Besides crafting code, Marin also enjoys
blogging, teaching, and speaking at conferences. He happily open-sources code. You
can find out more about Marin at www.underplot.com.

• Scott Gardner has been developing iOS apps since 2010, Swift since the day it was
announced, and RxSwift since before version 1. He's authored several video courses,
tutorials, and articles on iOS app development, presented at numerous conferences,
meetups, and online events, and this is his second book. Say hello to Scott on Twitter
at @scotteg.

Reactive Programming with Kotlin Sample About This Book Sample

raywenderlich.com 11

WWhat You Need

To follow along with the tutorials in this book, you’ll need the following:

• A PC running Windows 10 or a recent Linux such as Ubuntu 18.04 LTS, or a
Mac running the latest point release of macOS Mojave or later: You’ll need one
of these to be able to install the latest versions of IntelliJ IDEA and Android Studio.

• IntelliJ IDEA Community 2019.1 or later: IntelliJ IDEA is the IDE upon which
Android Studio is based, and it's used in the book to look at pure Kotlin projects that
demonstrate techniques in RxJava. You can download the latest version of IntelliJ
IDEA Community for free here: https://www.jetbrains.com/idea/

• Android Studio 3.3.2 or later: Android Studio is the main development tool for
Android. You can download the latest version of Android Studio for free here:
https://developer.android.com/studio

• An intermediate level knowledge of Kotlin and Android development. This book is
about learning RxJava specifically; to understand the rest of the project code and
how the accompanying demo projects work you will need at least an intermediate
understanding of Kotlin and the Android SDK.

All the Android sample projects in this book will work just fine in an Android emulator
bundled with Android Studio, or you can also use a physical Android device.

raywenderlich.com 12

LBook License

By purchasing Reactive Programming with Kotlin, you have the following license:

• You are allowed to use and/or modify the source code in Reactive Programming with
Kotlin in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Reactive Programming with Kotlin in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Reactive
Programming with Kotlin, available at www.raywenderlich.com”.

• The source code included in Reactive Programming with Kotlin is for your personal use
only. You are NOT allowed to distribute or sell the source code in Reactive
Programming with Kotlin without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action or contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 13

BBook Source Code &
Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
https://store.raywenderlich.com/products/reactive-programming-with-kotlin.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 14

1Chapter 1: Hello, RxJava!
By Alex Sullivan & Marin Todorov

This book aims to introduce you, the reader, to the RxJava, RxKotlin and RxAndroid
libraries and to writing reactive Android apps with Kotlin.

RxJava and RxKotlin
You may be asking yourself "Wait, why am I reading about RxJava when I'm using Kotlin
to build Android apps?" Great question! RxJava has been around since 2013, well before
Kotlin began to be accepted as a mainstream programming language, and is part of a
long list of Rx-based libraries written for different platforms and systems. Since Kotlin
has such excellent interopability with Java, it wouldn't make sense to completely
rewrite RxJava for Kotlin — you can just use the existing RxJava library instead!

However, just because RxJava doesn't need to be completely rewritten to work in Kotlin
doesn't mean that it couldn't benefit from all of the great features in the Kotlin
programming language.

That's where RxKotlin comes into play. RxKotlin is a library that expands RxJava by
adding a ton of utilities and extension methods that make working with RxJava much
more pleasant in Kotlin. However, you absolutely do not need RxKotlin to use the
RxJava library in a Kotlin-based Android app.

But what exactly is RxJava? Here’s a good definition:

RxJava is a library for composing asynchronous and event-based code by using
observable sequences and functional style operators, allowing for parameterized
execution via schedulers.

raywenderlich.com 15

Sound complicated? Don’t worry if it does. Writing reactive programs, understanding
the many concepts behind them and navigating a lot of the relevant, commonly used
lingo might be intimidating — especially if you try to take it all in at once, or when you
haven’t been introduced to it in a structured way.

That’s the goal of this book: to gradually introduce you to the various RxJava APIs and
Rx concepts by explaining how to use each of the APIs, and then covering their
practical usage in Android apps.

You’ll start with the basic features of RxJava, and then gradually work through
intermediate and advanced topics. Taking the time to exercise new concepts
extensively as you progress will make it easier to master RxJava by the end of the book.
Rx is too broad of a topic to cover completely in a single book; instead, we aim to give
you a solid understanding of the library so that you can continue developing Rx skills
on your own.

We still haven’t quite established what RxJava is though, have we? Start with a simple,
understandable definition and progress to a better, more expressive one as we waltz
through the topic of reactive programming later in this chapter.

RxJava, in its essence, simplifies developing asynchronous programs by allowing your
code to react to new data and process it in a sequential, isolated manner. In other
words, RxJava lets you observe sequences of asynchronous events in an app and
respond to each event accordingly. Examples are taps by a user on the screen and
listening for the results of asynchronous network calls.

As an Android app developer, this should be much more clear and tell you more about
what RxJava is, compared to the first definition you read earlier in this chapter.

Even if you’re still fuzzy on the details, it should be clear that RxJava helps you write
asynchronous code. And you know that developing good, deterministic, asynchronous
code is hard, so any help is quite welcome!

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 16

Introduction to asynchronous
programming
If you tried to explain asynchronous programming in a simple, down-to-earth
language, you might come up with something along the lines of the following:

An Android app, at any moment, might be doing any of the following things and more:

• Reacting to button taps

• Animating a view across the screen

• Downloading a large photo from the internet

• Saving bits of data to disk

• Playing audio

All of these things seemingly happen at the same time. Whenever the keyboard
animates out of the screen, the audio in your app doesn’t pause until the animation has
finished, right?

All the different bits of your program don’t block each other’s execution. Android offers
you several different APIs that allow you to perform different pieces of work on
different threads and perform them across the different cores of the device’s CPU.

Writing code that truly runs in parallel, however, is rather complex, especially when
different bits of code need to work with the same pieces of data. It’s hard to determine
which piece of code updates the data first or which code has read the latest value.

Android asynchronous APIs
Google has provided several different APIs that help you write asynchronous code.
You've probably used a few of them before, and chances are they left you leaving a bit
frustrated or maybe even scared.

You’ve probably used at least one of the following:

• AsyncTask: To do some work on the background and then update elements in your UI
with the result of that background work. You have to make sure to properly handle
cancelling a running AsyncTask when your Activity or Fragment shuts down, since
you could otherwise get a NullPointerException when the AsyncTask tries to update
UI elements that don't exist anymore.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 17

• IntentService: To start a fire-and-forget background job using an Intent. You
typically use an IntentService if you want to do some work that doesn't need to
touch the UI at all — saving an object to a database, for example.

• Thread: To start background work in a purely Java way without interacting with any
Android APIs. Threads come with the downside of being expensive and not bound to
any sort of ThreadPool.

• Future: To clearly chain work which will complete at some undetermined point in
the future. Futures are considerably clearer to use than AsyncTasks, but run into
some of the same problems around null pointers when a Fragment or Activity has
been destroyed.

The above isn't an exhaustive list — there's also Handler, JobScheduler, WorkManager,
HandlerThread and Kotlin coroutines.

Coroutines and RxJava
Now that Kotlin coroutines have started to become popular in the Android
development world, you may be asking yourself if it's still worthwhile to learn about
RxJava.

Many comparisons have been made between using RxJava and using coroutines for
Android development. Each review will give you a different answer about which tool
you should use.

In reality, RxJava and coroutines work at different levels of abstractions. Coroutines
offer a more lightweight approach to threading and allow you to write asynchronous
code in a synchronous manner. Rx, on the other hand, is used primarily to create the
event-driven architecture mentioned above, and to allow you to write reactive
applications. So, while they both offer an answer for doing asynchronous work off the
main thread, they're really different tools that are both useful depending on the
context.

If you're simply looking for an easy way to replace AsyncTask, then coroutines may
make more sense than pulling RxJava into your application. However, if you do want to
move towards a reactive, event-driven architecture, then RxJava is your best bet!

Asynchronous programming challenges
Since most of your typical classes would do something asynchronously, and all UI
components are inherently asynchronous, it’s impossible to make assumptions in what
order the entirety of your app code will get executed.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 18

After all, your app’s code runs differently depending on various external factors, such as
user input, network activity, or other OS events. Each time the user fires up your app,
the code may run in a completely different order depending on those external factors.
(Well, except for the case when you have an army of robots testing your app, then you
can expect all events to happen with precise, kill-bot synchronization.)

We’re definitely not saying that writing good asynchronous code is impossible. After all,
there's a litany of tools — like the ones listed above — that Android developers have
been using to write asynchronous apps since well before RxJava hit the scene.

The issue is that complex asynchronous code becomes very difficult to write in part
because of the variety of APIs that you as an Android developer will end up using:

You may be using an AsyncTask to update your UI, an IntentService to save something
to a database, a WorkManager task to sync your app to a server, and other various
asynchronous APIs. Since there is no universal language across all the asynchronous
APIs, reading and understanding the code, and reasoning about its execution, becomes
difficult.

To wrap up this section and put the discussion into a bit more context, you’ll compare
two pieces of code: one synchronous and one asynchronous.

Synchronous code
Performing an operation for each element of a list is something you’ve done plenty of
times. It’s a very simple yet solid building block of app logic because it guarantees two
things: It executes synchronously, and the collection is immutable from the outside
world while you iterate over it.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 19

Take a moment to think about what this implies. When you iterate over a collection,
you don’t need to check that all elements are still there, and you don’t need to rewind
back in case another thread inserts an element at the start of the collection. You
assume you always iterate over the collection in its entirety at the beginning of the loop.

If you want to play a bit more with these aspects of the for loop, try this in an app or
IntelliJ IDEA project:

var list = listOf(1, 2, 3)
for (number in list) {
 println(number)
 list = listOf(4, 5, 6)
}
print(list)

Is list mutable inside the for body? Does the collection that the loop iterates over ever
change? What’s the sequence of execution of all commands? Can you modify number if
you need to? You may be surprised by what you see if you run this code.

Asynchronous code
Consider similar code, but assume each iteration happens as a reaction to a click on a
button. As the user repeatedly clicks on the button, the app prints out the next element
in a list:

var list = listOf(1, 2, 3)
var currentIndex = 0
button.setOnClickListener {
 println(list[currentIndex])

 if (currentIndex != list.lastIndex) {
 currentIndex++
 }
}

Think about this code in the same context as you did for the previous one. As the user
clicks the button, will that print all of the list's elements? You really can’t say. Another
piece of asynchronous code might remove the last element, before it’s been printed.

Or another piece of code might insert a new element at the start of the collection after
you’ve moved on.

Also, you assume only that the click listener will ever change currentIndex, but another
piece of code might modify currentIndex as well — perhaps some clever code you
added at some point after crafting the above function.

You’ve likely realized that some of the core issues with writing asynchronous code are:
a) the order in which pieces of work are performed and b) shared mutable data.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 20

These are some of RxJava's strong suits!

Next, you need a good primer on the language that will help you start understanding
how RxJava works, what problems it solves, and ultimately let you move past this gentle
introduction and into writing your first Rx code in the next chapter.

Asynchronous programming glossary
Some of the language in RxJava is so tightly bound to asynchronous, reactive and/or
functional programming that it will be easier if you first understand the following
foundational terms.

In general, RxJava tries to address the following aspects of app development:

1. State, and specifically, shared mutable state
State is somewhat difficult to define. To understand state, consider the following
practical example.

When you start your laptop it runs just fine, but after you use it for a few days or even
weeks, it might start behaving weirdly or abruptly hang and refuse to speak to you. The
hardware and software remains the same, but what’s changed is the state. As soon as
you restart, the same combination of hardware and software will work just fine once
more.

The data in memory, the data stored on disk, all the artifacts of reacting to user input,
all traces that remain after fetching data from cloud services — the sum of these and
more is the state of your laptop.

Managing the state of your Android apps, especially when shared between multiple
asynchronous components, is one of the issues you’ll learn how to handle in this book.

2. Imperative programming
Imperative programming is a programming paradigm that uses statements to change
the program’s state. Much like you would use imperative language while playing with
your dog — “Fetch! Lay down! Play dead!” — you use imperative code to tell the app
exactly when and how to do things.

Imperative code is similar to the code that your computer understands. All the CPU
does is follow lengthy sequences of simple instructions. The issue is that it gets
challenging for humans to write imperative code for complex, asynchronous apps —
especially when shared, mutable state is involved.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 21

For example, take this code, found in onCreate() of an Android Activity:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setupUI()
 bindClickListeners()
 createAdapter()
 listenForChanges()
}

There’s no telling what these methods do. Do they update properties of the Activity
itself? More disturbingly, are they called in the right order? Maybe somebody
inadvertently swapped the order of these method calls and committed the change to
source control. Now the app might behave differently due to the swapped calls.

3. Side effects
Now that you know more about mutable state and imperative programming, you can
pin down most issues with those two things to side effects.

Side effects are any change to the state outside of the current scope. For example,
consider the piece of code in the example above. bindClickListeners() probably
attaches some kind of event handlers to some widgets. This causes a side effect, as it
changes the state of the view: the app behaves one way before executing
bindClickListeners(), and differently after that.

Side effects are also defined at the level of individual functions in your code. If a
function modifies any state other than the local variables defined inside the function,
then the function has introduced a side effect.

Any time you modify data stored on disk or update the text of a TextView on screen, you
cause side effects.

Side effects are not bad in themselves. After all, causing side effects is the ultimate goal
of any program! You need to change the state of the world somehow after your program
has finished executing.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 22

Running for a while and doing nothing makes for a pretty useless app.

The issue with producing side effects is doing it in a controlled way. You need to be able
to determine which pieces of code cause side effects, and which simply process and
output data.

RxJava tries to address the issues (or problems) listed above by utilizing the remaining
two concepts.

4. Declarative code
In imperative programming, you change state at will. An alternative style of
programming to imperative is functional programming. In functional code, you don’t
cause any side effects.

Since we don’t live in a perfect world, the balance lies somewhere in the middle of these
two extremes. RxJava combines some of the best aspects of imperative code and
functional code.

In addition to not causing side effects, functional code tends to be declarative. Code is
declarative when it focuses on the what that you want to do, instead of the how that
encompasses the imperative way of programming. Declarative code lets you define
pieces of behavior, and RxJava will run these behaviors any time there’s a relevant
event and then provide the behaviors an immutable, isolated data input to work with.

By programming declaratively, you can work with asynchronous code, but make the
same assumptions as in a simple for loop: that you’re working with immutable data
and you can execute code in a sequential, deterministic way.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 23

5. Reactive systems
"Reactive systems" is a rather abstract term and covers web or Android apps that exhibit
most or all of the following qualities:

• Responsive: Always keep the UI up to date, representing the latest app state.

• Resilient: Each behavior is defined in isolation and provides for flexible error
recovery.

• Elastic: The code handles varied workload, often implementing features such as lazy
pull-driven data collections, event throttling, and resource sharing.

• Message driven: Components use message-based communication for improved
reusability and isolation, decoupling the lifecycle and implementation of classes.

In short, reactive systems react to user and other events in a flexible and coherent
fashion.

The terms and concepts defined above are just the start of your RxJava vocabulary.
You'll see more terms as you progress through the book. Now that you have a start on
understanding the problems RxJava helps solve and how it approaches these issues, it’s
time to talk about the building blocks of Rx and how they play together.

Foundations of RxJava
Reactive programming isn’t a new concept; it’s been around for a fairly long time, but
its core concepts have made a noticeable comeback over the last decade.

In that period, web applications have became more involved and are facing the issue of
managing complex asynchronous UIs. On the server side, reactive systems (as described
above) have become a necessity.

A team at Microsoft took on the challenge of solving the problems of asynchronous,
scalable, real-time application development that we’ve discussed in this chapter. They
worked on a library, independently from the core teams in the company, and sometime
around 2009, offered a new client and server-side framework called Reactive Extensions
for .NET (Rx).

It was an installable add-on for .NET 3.5 and later became a built-in core library in .NET
4.0. It’s been an open-source component since 2012. Open sourcing the code permitted
other languages and platforms to reimplement the same functionality, which turned Rx
into a cross-platform standard.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 24

Today you have RxJS, RxSwift, Rx.NET, RxScala, RxJava, and more. All these libraries
strive to implement the same behavior and same expressive APIs. Ultimately, a
developer creating an Android app with RxJava can freely discuss app logic with
another programmer using RxJS on the web or RxSwift on iOS.

Like the original Rx, RxJava works with all the concepts you’ve covered so far: It tackles
mutable state, it allows you to compose event sequences and improves on architectural
concepts such as code isolation, reusability and decouplings.

Let’s revisit that definition:

RxJava finds the sweet spot between traditionally imperative Java/Kotlin code and
purist functional code. It allows you to react to events by using immutable code
definitions to asynchronously process pieces of input in a deterministic, composable
way.

You can read more about the family of Rx implementations at http://reactivex.io. This
is the central repository of documentation about Rx’s operators and core classes. It’s
also probably the first place you’ll notice the Rx logo, the electric eel:

Note: I personally thought for some time that it was a piece of seaweed, but
research shows that it is, in fact, an electric eel. (The Rx project used to be called
Volta.)

In this book, you are going to cover both the cornerstone concepts of developing with
RxJava as well as real-world examples of how to use them in your apps.

The three building blocks of Rx code are observables, operators and schedulers. The
sections below cover each of these in detail.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 25

Observables
The Observable<T> class provides the foundation of Rx code: the ability to
asynchronously produce a sequence of events that can “carry” an immutable snapshot
of data T. In the simplest words, it allows classes to subscribe for values emitted by
another class over time.

The Observable<T> class allows one or more observers to react to any events in real
time and update the app UI, or otherwise process and utilize new and incoming data.

The ObservableSource<T> Interface (which the Observable<T> class implements) is
extremely simple. An Observable can emit (and observers can receive) only three types
of events:

• A next event: An event which “carries” the latest (or next) data value. This is the way
observers “receive” values.

• A complete event: This event terminates the event sequence with success. It means
the Observable completed its life-cycle successfully and won’t emit any other events.

• An error event: The Observable terminates with an error and will not emit other
events.

When talking about asynchronous events emitted over time, you can visualize an
observable sequence of integers on a timeline, like so:

The blue boxes are the next events being emitted by the Observable. The vertical bar on
the right represents the complete event. An error event would be represented by an x
on the timeline.

This simple contract of three possible events an Observable can emit is anything and
everything in Rx. Because it is so universal, you can use it to create even the most
complex app logic.

Because the observable contract does not make any assumptions about the nature of
the Observable or the Observer, using event sequences is the ultimate decoupling
practice.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 26

You don’t ever need to use callbacks to allow your classes to talk to each other.

To get an idea about some real-life situations, you’ll look at two different kinds of
observable sequences: finite and infinite.

Finite observable sequences
Some observable sequences emit zero, one or more values, and, at a later point, either
terminate successfully or terminate with an error.

In an Android app, consider code that downloads a file from the internet:

• First, you start the download and start observing for incoming data.

• Then you repeatedly receive chunks of data as parts of the file come in.

• In the event the network connection goes down, the download will stop and the
connection will time-out with an error.

• Alternatively, if the code downloads all the file’s data, it will complete with success.

This workflow accurately describes the lifecycle of a typical observable. Take a look at
the related code below:

API.download(file = "http://www...")
 .subscribeBy(
 onNext = {
 // append data to a file
 },
 onComplete = {
 // use downloaded file
 },
 onError = {
 // display error to user
 }
)

API.download() returns an Observable<String> instance, which emits String values as
chunks of data come over the network. Calling subscribeBy tells the observable that
you'd like to subscribe for events that you're going to provide lambdas for.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 27

You subscribe to next events by providing the onNext lambda. In the downloading
example, you append the data to a temporary file stored on disk.

You subscribe to an error event by providing the onError lambda. In the lambda, you
can display a Throwable.message in an alert box or do something else.

Finally, to handle a complete event, you provide the onComplete lambda, where you can
do something like start a new Activity to display the downloaded file or anything else
your app logic dictates.

Infinite observable sequences
Unlike file downloads or similar activities, which are supposed to terminate either
naturally or forcefully, there are other sequences which are simply infinite. Often, UI
events are such infinite observable sequences.

For example, consider the code you need to react to a Switch being toggled in your app:

• You add an OnCheckedChangedListener to the switch you want to listen to.

• You then need to provide a lambda callback to the OnCheckedChangeListener. It looks
at the isChecked value and updates the app state accordingly.

This sequence of switch checked changes does not have a natural end. As long as there
is a switch on the screen, there is a possible sequence of switch checked changes.
Further, since the sequence is virtually infinite, you always have an initial value at the
time you start observing it — namely, whether the switch is on or off.

It may happen that the user never toggles the switch, but that doesn’t mean the
sequence of events is terminated. It just means that there were no events emitted.

In RxJava, you could write code like this to react to the switch changing:

switch.checkedChanges()
 .subscribeBy(
 onNext = { isOn ->
 if (isOn) {
 // toggle a setting on
 } else {
 // toggle a setting off
 }

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 28

checkedChanges() is a soon-to-be-discovered extension method on CompoundButton
that produces an Observable<Boolean>. (This is very easy to code yourself; you’ll learn
how in upcoming chapters).

You subscribe to the Observable returned from checkedChanges() and update the app
settings according to the current state of the switch. Note that you skip the onError and
onComplete parameters to subscribeBy, since these events will not be emitted from that
observable — a switch is either on or it's not.

Operators
ObservableSource<T> and the implementation of the Observable class include plenty of
methods that abstract discrete pieces of asynchronous work, which can be composed
together to implement more complex logic.

Because they are highly decoupled and composable, these methods are most often
referred to as operators. Since these operators mostly take in asynchronous input and
only produce output without causing side effects, they can easily fit together, much like
puzzle pieces, and work to build a bigger picture.

For example, take the mathematical expression (5 + 6) * 10 - 2.

In a clear, deterministic way, you can apply the operators *, (), + and - in their
predefined order to the pieces of data that are their input, take their output and keep
processing the expression until it’s resolved.

In a somewhat similar manner, you can apply Rx operators to the pieces of input
emitted by an Observable to deterministically process inputs and outputs until the
expression has been resolved to a final value, which you can then use to cause side
effects.

Here’s the previous example about observing switch changes, adjusted to use some
common Rx operators:

switch.checkedChanges()
 .filter { it == true }
 .map { "We've been toggled on!" }
 .subscribeBy(
 onNext = { message ->
 updateTextView(message)
 }
)

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 29

Each time checkedChanges() produces either a true or false value, Rx will apply the
filter and map operators to that emitted piece of data.

First, filter will only let through values that are true. If the switch has been toggled
off the subscription code will not be executed because filter will restrict those values.

In case of true values, the map operator will take the Boolean type input and convert it
to a String output — the text "We've been toggled on!".

Finally, with subscribeBy you subscribe for the resulting next event, this time carrying
a String value, and you call a method to update some text view with that text onscreen.

The operators are also highly composable — they always take in data as input and
output their result, so you can easily chain them in many different ways, achieving
much more than what a single operator can do on its own!

As you work through the book, you will learn about more complex operators that
abstract even more-involved pieces of asynchronous work.

Schedulers
Schedulers are similar to the ThreadPools that you see in normal Java and Kotlin code.
If you're not familiar with ThreadPools, you can think of them as a collection of Threads
that are all joined together and available to use.

RxJava comes with a number of predefined schedulers, which cover 99% of use cases.
Hopefully, this means you will never have to go about creating your own scheduler.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 30

In fact, most of the examples in the first half of this book are quite simple and generally
deal with observing data and updating the UI, so you won’t look into schedulers at all
until you’ve covered the basics.

That being said, schedulers are very powerful.

For example, you can specify that you’d like to observe for next events on the IO
scheduler, which makes your Rx code run on a background thread pool — you may want
to use this scheduler if you're downloading files from the network or saving something
to a database.

TrampolineScheduler will run your code concurrently. The ComputationScheduler will
allow you to schedule your subscriptions on a separate set of Threads that are reserved
for heavy lifting computation tasks.

Thanks to RxJava, you can schedule the different pieces of work of the same
subscription on different schedulers to achieve the best performance. Even if they
sound very interesting and quite handy, don’t bother too much with schedulers for now.
You’ll return to them later in the book.

App architecture
It’s worth mentioning that RxJava doesn’t alter your app’s architecture in any way; it
mostly deals with events, asynchronous data sequences and a universal communication
contract.

You can create apps with Rx by implementing a normal Model-View-Controller (MVC)
architecture. You can also choose to implement a Model-View-Presenter (MVP)
architecture or Model-View-ViewModel (MVVM) if that’s what you prefer.

In case you’d like to go that way, RxJava is also very useful for implementing your own
unidirectional data-flow architecture.

It’s important to note that you definitely do not have to start a project from scratch to
make it a reactive app; you can iteratively refactor pieces of an exiting project or simply
use RxJava when appending new features to your app.

The MVVM architecture was originally developed by Microsoft specifically for event-
driven software created on platforms which offers data bindings. RxJava and MVVM
definitely do play nicely together, and towards the end of this book you’ll look into that
pattern and how to implement it with RxJava.

The reason MVVM and RxJava go great together is that a ViewModel allows you to

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 31

expose Observable<T> properties, which you can bind directly to UI widgets in your
Activity, or translate them into LiveData objects from Android Jetpack and then
subscribe to those instead. This makes binding model data to the UI very simple to
represent, and to code. You'll see how to integrate the use of RxJava with LiveData later
in the book.

RxAndroid and RxBinding
RxJava is the implementation of the common Rx API. Therefore, it doesn't know
anything about any Android-specific classes.

There are two companion libraries that can be used to fill in a few of the gaps between
Android and RxJava.

The first is a tiny library called RxAndroid. RxAndroid has one specific purpose: to
provide a bridge between Androids Looper class and RxJava's schedulers. Chances are,
you'll use this library simply to receive the results of an Observable on the UI thread so
that you can update your views.

The second library is a broader library called RxBinding. RxBinding provides a large
number of utility methods to turn callback-styled view listeners into observables. You
actually already saw an example of this library being used, the checkedChanges()
method used earlier on a Switch:

switch.checkedChanges()
 .subscribeBy(
 onNext = { boolean ->
 println("Switch is on: $boolean")
 }
)

checkedChanges() is an extension method provided by the RxBinding library to turn a
normal CompoundButton like Switch into a stream of on or off states.

RxBinding provides similar bindings for many of the Android view classes, such as
listening for clicks on a Button and changes to the text in an EditText.

Installing RxJava
RxJava is available for free at https://github.com/ReactiveX/RxJava.

RxJava is distributed under the Apache-2.0 license, which, in short, allows you to
include the library in free or commercial software, on an as-is basis. As with all other

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 32

Apache-2.0 licensed software, the copyright notice should be included in all apps you
distribute.

Including RxJava in a Gradle-based project, such as an Android app, is simple — just add
the following to the dependencies block in your module's build.gradle file:

implementation "io.reactivex.rxjava2:rxjava:2.2.2"
implementation 'io.reactivex:rxkotlin:2.3.0'

The first implementation line is for RxJava. The second is for including the RxKotlin
extensions. You can omit the RxJava import if you include RxKotlin, but since the
RxKotlin library may not include the latest RxJava library, it's good practice to include
both. You'll generally want to include the latest versions of both libraries.

Note: You may have noticed that the dependency for RxJava actually says rxjava2
in it. There's two major versions of RxJava: RxJava1 and RxJava2. RxJava2 added a
lot of useful new tricks and types to the library, and this book will be using
RxJava2. You can find some of the differences in the What's different in 2.0 article.

Community
The RxJava project is alive and buzzing with activity, not only because Rx is inspiring
programmers to create cool software with it, but also due to the positive nature of the
community that formed around this project.

The RxJava community is very friendly, open minded, and enthusiastic about discussing
patterns, common techniques, or just helping each other.

You can find channels dedicated to talking about RxJava in both the Android United
Slack and the official Kotlin Slack.

The first can be found, here: http://android-united.community/. If you request an invite
you should be approved quickly.

The official Kotlin Slack can be found here: https://kotlinlang.slack.com/.

Search for rx in both Slacks and you should find what you're looking for!

Both Slacks are friendly and inviting, and people are always available to troubleshoot
some particularly tricky Rx code, or to just discuss the latest and greatest in the world
of RxJava and RxKotlin.

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 33

Key points
• RxJava is a library that provides an Rx framework for Java-based projects such as

Android apps.

• RxJava can be used even when using the Kotlin language for app development.

• The RxKotlin library adds some Kotlin related utilities and extensions on top of
RxJava.

• RxJava and all Rx frameworks provide for a way to program using asynchronous,
event-based code.

• RxJava helps you build reactive systems in a declarative style.

• The main elements you'll use in RxJava are observables, operators, and schedulers.

• The RxAndroid and RxBinding libraries assist you in using RxJava on Android.

Where to go from here?
This chapter introduced you to many of the problems that RxJava addresses. You
learned about the complexities of asynchronous programming, sharing mutable state,
causing side effects and more.

You haven’t written any RxJava yet, but you now understand why RxJava is a good idea
and you’re aware of the types of problems it solves. This should give you a good start as
you work through the rest of the book.

And there is plenty to work through! You’ll start by creating very simple observables
and work your way up to complete real-world Android apps using the MVVM
architecture.

Move right on to Chapter 2, “Observables”!

Reactive Programming with Kotlin Sample Chapter 1: Hello, RxJava!

raywenderlich.com 34

2Chapter 2: Observables
By Alex Sullivan & Scott Gardner

Now that you're all setup with RxJava, it's time to jump in and start building some
observables!

In this chapter, you're going to go over a few different examples of creating and
subscribing to observables. Things are going to be pretty theoretical for now, but rest
assured that the skills you pick up in this chapter will come in very handy as you start
working through real-world projects.

Getting started
You'll work through these theoretical examples of observables using a normal IntelliJ
IDEA project. You'll move on to Android Studio projects once you switch to working on
real-world Android applications.

Use the File ▸ Open command in IntelliJ IDEA to open the root folder of the starter
project. Accept the defaults in any pop-ups that occur, and the project will then be
opened. You'll primarily be working in the main.kt file in the src/main/kotlin folder of
the project. For now, there's just an empty main function. You'll fill it out as you
progress through the chapter.

Before you start diving into some RxJava code, take a look at the SupportCode.kt file.
It contains the following helper function exampleOf(description: String, action: ()
-> Unit):

fun exampleOf(description: String, action: () -> Unit) {
 println("\n--- Example of: $description ---")
 action()
}

raywenderlich.com 35

You'll use this function to encapsulate different examples as you work your way
through this chapter. You’ll see how to use this function shortly.

But, before you get too deep into that, now would probably be a good time to answer
the question: What is an observable?

Observables are the heart of Rx. You’re going to spend some time discussing what
observables are, how to create them and how to use them.

What is an observable?
You’ll see “observable,” “observable sequence,” and “stream” used interchangeably in
Rx. And, really, they’re all the same thing. In RxJava...

...or something that works with a sequence. And an Observable is just a sequence with
special powers. One of them, in fact the most important one, is that it is asynchronous.
Observables produce events, the process of which is referred to as emitting, over a
period of time. Events can contain values, such as numbers or instances of a custom
type, or they can be recognized user gestures, such as taps.

One of the best ways to conceptualize this is by using marble diagrams, which are just
values plotted on a timeline.

The left-to-right arrow represents time, and the numbered circles represent elements
of a sequence. Element 1 will be emitted, some time will pass, and then 2 and 3 will be
emitted. How much time, you ask? It could be at any point throughout the life of the
observable — which brings you to the lifecycle of an observable.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 36

Lifecycle of an observable
In the previous marble diagram, the observable emitted three elements. When an
observable emits an element, it does so in what’s known as a next event.

Here’s another marble diagram, this time including a vertical bar that represents the
end of the road for this observable.

This observable emits three tap events, and then it ends. This is called a complete
event, as it’s been terminated. For example, perhaps the taps were on a view that had
been dismissed. The important thing is that the observable has terminated, and it can
no longer emit anything. This is normal termination. However, sometimes things can
go wrong.

An error has occurred in this marble diagram; it’s represented by the red X. The
observable emitted an error event containing the error. This is no different than when
an observable terminates normally with a complete event. If an observable emits an
error event, it is also terminated and can no longer emit anything else.

Here’s a quick recap:

• An observable emits next events that contain elements. It can continue to do this
until it either:

• ...emits an error event and is terminated.

• ...emits a complete event and is terminated.

• Once an observable is terminated, it can no longer emit events.

Now that you understand what an observable is and what it does, you’ll create some
observables to see them in action.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 37

Creating observables
Switch back from the current file to main.kt and add the code below:

exampleOf("just") {
 val observable: Observable<Int> = Observable.just(1)
}

In the code above, you used the just static method to create an observable with just
one item: the Integer 1.

In Rx, methods that operate on observables are referred to as operators — so you just
utilized the just operator!

just is aptly named, since all it does is create an observable sequence containing just
the provided elements. just can take more than one item as well — try updating the
previous line to take in a few more items:

val observable = Observable.just(1,2,3)

This time, you didn't explicitly specify the type. You might think that because you gave
it several integers, the type is Observable<List<Int>>. However, if you hover over the
Observable.just(1,2,3) expression and click View ▸ Expression Type you'll see that
the type is actually Observable<Int>.

just has ten overloaded methods that take a variable number of arguments, each of
which are eventually emitted by the observable. If you want to create an observable of
type Observable<List<Int>>, then you can pass a List<Int> into the just operator.
Replace the observable you previously defined with the following:

val observable = Observable.just(listOf(1))

Now, hover over the Observable.just(listOf(1)) expression and click View ▸
Expression Type again. You'll see that the type is now Observable<List<Int>>. That
means that this new observable will emit one item — and that single item will be a list
of Int values. It can be a little tough to wrap your mind around an observable that emits
lists, but with time it will become second nature!

Another operator you can use to create observables is fromIterable. Add this code
tothe bottom of the main() function:

exampleOf("fromIterable") {
 val observable: Observable<Int> =
 Observable.fromIterable(listOf(1, 2, 3))
}

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 38

The fromIterable operator creates an observable of individual objects from a regular
list of elements. That is, it takes all of the items in the provided list and emits those
elements as if you had instead written Observable.just(1, 2, 3).

Hover over the Observable.fromIterable(listOf(1, 2, 3)) expression and click View
▸ Expression Type again. You'll see that the type of this observable is Observable<Int>
rather than Observable<List<Int>>.

fromIterable can be handy if you have a list of objects you want to convert into an
observable sequence.

The IntelliJ IDEA console is probably looking pretty bare at the moment. That’s because
you haven’t printed anything except the example header. Time to change that by
subscribing to observables.

Subscribing to observables
As an Android developer, you may be familiar with LocalBroadcastManager; it
broadcasts notifications to observers, which are different than RxJava Observables.
Here's an example of of a broadcast receiver that listens for a custom-event Intent:

LocalBroadcastManager.getInstance(this)
 .registerReceiver(object : BroadcastReceiver() {
 override fun onReceive(context: Context?, intent: Intent?) {
 println("We got an intent!")
 }
}, IntentFilter("custom-event"))

Subscribing to an RxJava observable is fairly similar; you call observing an observable
subscribing to it. So instead of registerReceiver(), you use subscribe(). Unlike
LocalBroadcastManager, where developers typically use only the getInstance()
singleton instance, each observable in Rx is different.

More importantly, an observable won’t send events until it has a subscriber. Remember
that an observable is really a sequence definition; subscribing to an observable is more
like calling next() on an Iterator in the Kotlin Standard Library:

val sequence = 0 until 3
val iterator = sequence.iterator()
while (iterator.hasNext()) {
 println(iterator.next())
}

/* Prints:
0
1

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 39

2
*/

Subscribing to observables is more streamlined than this, though. You can also add
handlers for each event type an observable can emit. Recall that an observable emits
next, error, and complete events. A next event passes the element being emitted to the
handler, and an error event contains a throwable instance.

To see this in action, add this new example to the IntelliJ project (insert the code
somewhere after the closing curly bracket of the previous example):

exampleOf("subscribe") {
 val observable = Observable.just(1, 2, 3)
}

This is similar to the previous example, except, this time, you’re simply using the just
operator. Now add this code at the bottom of this example's lambda, to subscribe to the
observable:

observable.subscribe { println(it) }

Note: The console should automatically appear whenever you run the project, but
you can manually show it by clicking the Run tab in the bottom left of the IntelliJ
IDEA window after you run the main() function. This is where the println
statements display their output.

Option-click on the subscribe operator, and you’ll see that it takes a Consumer of type
Int. Consumer is a simple interface that has one method, accept(), which takes a value
and returns nothing. You'll also see that subscribe returns a Disposable. You’ll cover
disposables shortly.

The result of this subscription is that each event emitted by the observable prints out:

--- Example of: subscribe ---
1
2
3

You’ve seen how to create observables of one element and of many elements. But what
about an observable of zero elements? The empty operator creates an empty observable
sequence with zero elements; it will only emit a complete event.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 40

Add this new example to the project:

exampleOf("empty") {
 val observable = Observable.empty<Unit>()
}

An observable must be defined as a specific type if it can’t be inferred. So, since empty
has nothing from which to infer the type, the type must be defined explicitly. In this
case, Unit is as good as anything else. Add this code to the example to subscribe to it:

observable.subscribeBy(
 // 1
 onNext = { println(it) },
 // 2
 onComplete = { println("Completed") }
)

You're using a new subscribeBy method here instead of the subscribe method you used
previously. subscribeBy is a handy extension method defined in the RxKotlin library,
which we'll touch on later in the book. Unlike the subscribe method you used
previously, subscribeBy lets you explicitly state what event you want to handle —
onNext, onComplete, or onError. If you were to only supply the onNext field of
subscribeBy, you'd be recreating the subscribe functionality you used above.

Taking each numbered comment in turn:

1. Explicitly handle the onNext callback, just like before.

2. A complete event doesn't carry any value, so just print "Completed" instead.

In the console, you’ll see that empty simply emits a complete message:

--- Example of: empty ---
Completed

But what use is an empty observable? Well, they’re handy when you want to return an
observable that immediately terminates or intentionally has zero values. As opposed to
the empty operator, the never operator creates an observable that doesn’t emit anything
and never terminates. It can be used to represent an infinite duration. Add this example
to the project:

exampleOf("never") {
 val observable = Observable.never<Any>()

 observable.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") }
)
}

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 41

Nothing is printed, except for the example header. Not even "Completed". How do you
know if this is even working? Hang on to that inquisitive spirit until the Challenges
section of this chapter.

So far, you’ve been working mostly with observables of explicit variables, but it’s also
possible to generate an observable from a range of values.

Add this example to the project:

exampleOf("range") {
 // 1
 val observable: Observable<Int> = Observable.range(1, 10)

 observable.subscribe {
 // 2
 val n = it.toDouble()
 val fibonacci = ((Math.pow(1.61803, n) - Math.pow(0.61803, n)) /
 2.23606).roundToInt()
 println(fibonacci)
 }
}

Taking it section by section:

1. Create an observable using the range operator, which takes a start integer value
and a count of sequential integers to generate.

2. Calculate and print the nth Fibonacci number for each emitted element. (The
Fibonacci sequence is generated by adding each of the previous two numbers in the
sequence, starting with 0 and 1.)

There’s actually a better place than in the subscribe method, to put code that
transforms the emitted element. You’ll learn about that in Chapter 7, “Transforming
Operators.”

Except for the never() example, up to this point, you’ve been working with observables
that automatically emit a completed event and naturally terminate. This permitted you
to focus on the mechanics of creating and subscribing to observables, but that swept an
important aspect of subscribing to observables under the rug.

It’s time to do some housekeeping and deal with that aspect before moving on.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 42

Disposing and terminating
Remember that an observable doesn’t do anything until it receives a subscription. It’s
the subscription that triggers an observable to begin emitting events, up until it emits
an error or completed event and is terminated. You can manually cause an observable
to terminate by canceling a subscription to it.

Add this new example to the project:

 exampleOf("dispose") {
 // 1
 val mostPopular: Observable<String> = Observable.just("A", "B", "C")
 // 2
 val subscription = mostPopular.subscribe {
 // 3
 println(it)
 }
}

Quite simply:

1. Create an observable of strings.

2. Subscribe to the observable, this time saving the returned Disposable as a local
constant called subscription.

3. Print each emitted event in the handler.

To explicitly cancel a subscription, call dispose() on it. After you cancel the
subscription, or dispose of it, the observable in the current example will stop emitting
events.

Add this code to the bottom of the example:

subscription.dispose()

Managing each subscription individually would be tedious, so RxJava includes a
CompositeDisposable type. A CompositeDisposable holds disposables — typically added
using the add() method — and will call dispose() on all of them when you call
dispose() on the CompositeDisposable itself. Add this new example to the project:

exampleOf("CompositeDisposable") {
 // 1
 val subscriptions = CompositeDisposable()
 // 2
 val disposable = Observable.just("A", "B", "C")
 .subscribe {
 // 3
 println(it)

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 43

 }
 // 4
 subscriptions.add(disposable)
}

Here’s how this disposable code works:

1. Create a CompositeDisposable.

2. Create an observable and disposable.

3. Subscribe to the observable and print out the emitted item.

4. Add the Disposable return value from subscribe to the subscriptions
CompositeDisposable.

This is the pattern you’ll use most frequently: creating and subscribing to an
observable and immediately adding the subscription to a CompositeDisposable.

Why bother with disposables at all? If you forget to call dispose() on a Disposable
when you’re done with the subscription, or in some other way cause the observable to
terminate at some point, you will probably leak memory.

If you forget to utilize the Disposable returned by calling subscribe on an Observable,
Android Studio will make it very clear that something is not right in an Android
project!

The create operator
In the previous examples, you’ve created observables with specific next event elements.
Another way to specify all events that an observable will emit to subscribers is by using
the create operator.

Add this new example to the project:

exampleOf("create") {

 val disposables = CompositeDisposable()

 Observable.create<String> { emitter ->

 }
}

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 44

The create operator takes a single parameter named source. Its job is to provide the
implementation of calling subscribe on the observable. In other words, it defines all
the events that will be emitted to subscribers. Command-click on create to see it's
definition:

The source parameter is an ObservableOnSubscribe<T>. ObservableOnSubscribe is a
SAM (Single Abstract Method) interface that exposes one method — subscribe. That
subscribe method takes in an Emitter<T>, which has a few methods that you'll use to
build up the actual Observable. Specifically, it has onNext, onComplete, and onError
methods that you can invoke.

Change the implementation of create to the following:

val observable = Observable.create<String> { emitter ->
 // 1
 emitter.onNext("1")

 // 2
 emitter.onComplete()

 // 3
 emitter.onNext("?")
 }

Here’s the play by play:

1. Emit the string 1 via the onNext method.

2. Emit a completed event.

3. Emit another string ? via the onNext method again.

Do you think the second onNext element (?) could ever be emitted to subscribers? Why
or why not?

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 45

To see if you guessed correctly, subscribe to the observable by adding the following
code on the next line after the create implementation:

.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") },
 onError = { println(it) }
)

You’ve subscribed to the observable. The result is that the first next event element and
"Completed" print out. The second next event doesn’t print because the observable
emitted a completed event and terminated before it.

 --- Example of: create ---
1
Completed

Add the following line of code between the emitter.onNext and emitter.onComplete
calls:

 emitter.onError(RuntimeException("Error"))

The observable emits the error and then is terminated.

--- Example of: create ---
1
Error

What would happen if you emitted neither a completed nor an error event? Comment
out the onComplete and onError lines of code to find out.

Here’s the complete implementation:

exampleOf("create") {
 Observable.create<String> { emitter ->
 // 1
 emitter.onNext("1")

// emitter.onError(RuntimeException("Error"))
 // 2
// emitter.onComplete()

 // 3
 emitter.onNext("?")
 }.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") },
 onError = { println("Error") }
)
}

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 46

Congratulations, you’ve just leaked memory! The observable will never finish, and since
you never disposed of the Disposable returned by Observable.create the sequence will
never be canceled.

 --- Example of: create ---
1
?

Feel free to uncomment the line adding the complete event or dispose of the returned
Disposable if you can't stand leaving the code in a leaky state.

Creating observable factories
Rather than creating an observable that waits around for subscribers, it’s possible to
create observable factories that vend a new observable to each subscriber.

Add this new example to the project:

exampleOf("defer") {

 val disposables = CompositeDisposable()
 // 1
 var flip = false
 // 2
 val factory: Observable<Int> = Observable.defer {
 // 3
 flip = !flip
 // 4
 if (flip) {
 Observable.just(1, 2, 3)
 } else {
 Observable.just(4, 5, 6)
 }
 }
}

Here’s the explanation:

1. Create a Boolean flag to flip which observable to return.

2. Create an observable of Int factory using the defer operator.

3. Invert flip, which will be used each time factory is subscribed to.

4. Return different observables based on whether flip is true or false.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 47

Externally, an observable factory is indistinguishable from a regular observable. Add
this code to the bottom of the example to subscribe to factory four times:

for (i in 0..3) {
 disposables.add(
 factory.subscribe {
 println(it)
 }
)
}

disposables.dispose()

Each time you subscribe to factory, you get the opposite observable. You get 123, then
456, and the pattern repeats each time a new subscription is created:

 --- Example of: defer ---
1
2
3
4
5
6
1
2
3
4
5
6

Using other observable types
In addition to the normal Observable type, there are a few other types of observables
with a narrower set of behaviors than regular observables. Their use is optional; you
can use a regular observable anywhere you might use one of these specialized
observables. Their purpose is to provide a way to more clearly convey your intent to
readers of your code or consumers of your API. The context implied by using them can
help make your code more intuitive.

There are three special types of observables in RxJava: Single, Maybe and Completable.
Without knowing anything more about them yet, can you guess how each one is
specialized?

• Singles will emit either a success(value) or error event. success(value) is actually
a combination of the next and completed events. This is useful for one-time
processes that will either succeed and yield a value or fail, such as downloading data
or loading it from disk.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 48

• A Completable will only emit a completed or error event. It doesn't emit any value.
You could use a Completable when you only care that an operation completed
successfully or failed, such as a file write.

• And Maybe is a mash-up of a Single and Completable. It can either emit a
success(value), completed, or error. If you need to implement an operation that
could either succeed or fail, and optionally return a value on success, then Maybe is
your ticket.

You’ll have an opportunity to work more with these special observable types in Chapter
4, "Observables and Subjects in Practice," and beyond. For now, you’ll run through a
basic example of using a Single to load some text from a text file named Copyright.txt
in the src folder of the project, because who doesn't love some legalese once in a while?

Add this example to main():

exampleOf("Single") {
 // 1
 val subscriptions = CompositeDisposable()
 // 2
 fun loadText(filename: String): Single<String> {
 // 3
 return Single.create create@{ emitter ->

 }
 }
}

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 49

Here's what you do in this code:

1. Create a composite disposable to use later.

2. Implement a function to load text from a file on disk that returns a Single.

3. Create and return a Single.

Add this code inside the create lambda to complete the implementation:

// 1
val file = File(filename)
// 2
if (!file.exists()) {
 emitter.onError(FileNotFoundException("Can't find $filename"))
 return@create
}
// 3
val contents = file.readText(Charsets.UTF_8)
// 4
emitter.onSuccess(contents)

From the top:

1. Create a new File from the filename.

2. If the file doesn't exist, emit a FileNotFoundException via the onError method and
return from the create method.

3. Get the data from the file.

4. Emit the contents of the file.

Now you can put this function to work. Add this code to the example:

// 1
val observer = loadText("Copyright.txt")
 // 2
 .subscribeBy(
 // 3
 onSuccess = { println(it) },
 onError = { println("Error, $it") }
)

subscriptions.add(observer)

Here, you:

1. Call loadText(), passing the root name of the text file.

2. Subscribe to the Single it returns.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 50

3. Pass onSuccess and onError lambdas to the subscribeBy method, either printing
the contents of the file or printing the error.

If you run the example, you should see the text from the file printed to the console, the
same as the copyright comment at the top of the project:

 --- Example of: Single ---
Copyright (c) 2014-2019 Razeware LLC
...

Try changing the filename to something else, and you should get the file not found
exception printed instead.

Key points
• Everything is a sequence in RxJava, and the primary sequence type is Observable.

• Observables start emitting when they are subscribed to.

• You must dispose of subscriptions when done with them, and you'll often use a
CompositeDisposable to do so.

• Single, Completable and Maybe are specialized observable types that are handy in
certain situations.

Challenges
Practice makes permanent. By completing challenges in the book, you’ll practice what
you’ve learned in each chapter and pick up a few more tidbits of knowledge about
working with observables. A starter project as well as a finished version are provided for
each challenge. Enjoy!

Challenge: Perform side effects
In the never operator example earlier, nothing printed out. That was before you were
adding your subscriptions to composite disposables, but if you had added it to one, you
could've used a handy operator to print a message when the disposable was disposed.

Operators that begin with doOn, such as the doOnDispose operator, allows you to insert
side effects; that is, you add handlers that take some action but that won't affect the
observable. For doOnDispose, that is whenever the disposable is disposed of.

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 51

There's a few other handy doOn methods that you can use. There's a doOnNext method, a
doOnComplete method, a doOnError method and a doOnSubscribe method that you can
also use to perform some side effect at the right moment.

To complete this challenge, insert the doOnSubscribe operator in the never example.
Feel free to include any of the other handlers if you’d like; they work just like
doOnSubscribe’s handler does.

And while you’re at it, create a composite disposable and add the subscription to it.

Don't forget you can always peek into the finished challenge project for "inspiration."

Reactive Programming with Kotlin Sample Chapter 2: Observables

raywenderlich.com 52

WWhere to Go From Here?

We hope you enjoyed this sample of Reactive Programming with Kotlin: Learn Rx with
RxJava, RxKotlin, and RxAndroid!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

1. Hello RxJava!: Learn about the reactive programming paradigm and what RxJava
can bring to your app.

2. Observables: Now that you’re ready to use RxJava and have learned some of the
basic concepts, it’s time to play around with observables.

3. Subjects: In this chapter, you’re going to learn about the different types of subjects
in RxJava, see how to work with each one and why you might choose one over
another based on some common use cases.

4. Observables & Subjects in Practice: In this chapter, you’ll use RxJava and your
new observable super-powers to create an app that lets users to create nice photo
collages — the reactive way.

5. Filtering Operators: This chapter will teach you about RxJava’s filtering operators
that you can use to apply conditional constraints to “next” events, so that the
subscriber only receives the elements it wants to deal with.

6. Filtering Operators in Practice: In the previous chapter, you began your
introduction to the functional side of RxJava. In this chapter, you’re going to try
using the filtering operators in a real-life app.

7. Transforming Operators: In this chapter, you’re going to learn about one of the
most important categories of operators in RxJava: transforming operators.

raywenderlich.com 53

8. Transforming Operators in Practice: In this chapter, you’ll take an existing app
and add RxJava transforming operators as you learn more about map and flatMap,
and in which situations you should use them in your code.

9. Combining Operators: This chapter will show you several different ways to
assemble sequences, and how to combine the data within each sequence.

10. Combining Operators in Practice: You'll get an opportunity to try some of the
most powerful RxJava operators. You'll learn to solve problems similar to those
you'll face in your own applications.

11. Time-Based Operators: Managing the time dimension of your sequences is
important. To learn about time-based operators, you'll practice with an animated
app that visually demonstrates how data flows over time.

12. Error Handling in Practice: Even the best RxJava developers can’t avoid
encountering errors. You’ll learn how to deal with errors, how to manage error
recovery through retries, or just surrender yourself to the universe and letting the
errors go.

13. Intro to Schedulers: This chapter will cover the beauty behind schedulers, where
you’ll learn why the Rx abstraction is so powerful and why working with
asynchronous programming is far less less painful than using locks or queues.

14. Flowables & Back Pressure: Observables are very powerful, but what happens if a
subscriber can't keep up with the next events? You'll see how to handle this
situation using Flowables.

15. Testing RxJava Code: Testing your code is at the heart of writing good software —
RxJava comes with lots of nifty tricks for testing everything under the sun.

16. Creating Custom Reactive Extensions: Beyond using the elements made
available directly by RxJava, you can also create RxJava wrappers around existing
non-Rx frameworks. You'll learn how to create and incorporate such wrappers into
your reactive application.

17. RxBinding: You'll learn how the extremely handy library RxBinding takes care of
making reactive bindings for the Android View classes, and see how to use
RxBinding in an app.

18. Retrofit: In earlier chapters, you've used Retrofit to add networking to your
reactive apps. In this chapter, explore exactly how Retrofit interfaces with the Rx
world and see how you can take advantage of all that it offers.

Reactive Programming with Kotlin Sample Where to Go From Here?

raywenderlich.com 54

19. RxPreferences: The RxPreferences library provides a reactive wrapper around
SharedPreferences. In this chapter, you'll learn how the library works and how you
can use it to effectively stream preference changes.

20. RxPermissions: There's a fantastic library called RxPermissions that you'll use in
this chapter to help alleviate the pain points of asking the user for permissions at
runtime, giving you a reactive flow when requesting permissions.

21. RxJava & Jetpack: Android Jetpack is a suite of libraries provided by the Android
team to make developing Android apps a breeze. You've already seen ViewModel
and LiveData used with RxJava. In this chapter, you'll explore using the Room and
Paging Library components from Jetpack in a reactive app.

22. Building a Complete RxJava App: To conclude this book, you’ll architect and code
a small RxJava application. The goal is not to use Rx “at all costs”, but rather to
make design decisions that lead to a tidy architecture with stable, predictable and
modular behavior. The application is simple by design, to clearly present ideas you
can use to architect your own applications.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/reactive-programming-with-kotlin

We hope you enjoy the book!

— The Reactive Programming with Kotlin: Learn Rx with RxJava, RxKotlin, and RxAndroid
team

Reactive Programming with Kotlin Sample Where to Go From Here?

raywenderlich.com 55

	About This Book Sample
	About the Author
	About the Editors
	About the Artist

	What You Need
	Book License
	Book Source Code & Forums
	Chapter 1: Hello, RxJava!
	RxJava and RxKotlin
	Introduction to asynchronous programming
	Foundations of RxJava
	App architecture
	RxAndroid and RxBinding
	Installing RxJava
	Community
	Key points
	Where to go from here?

	Chapter 2: Observables
	Getting started
	What is an observable?
	Lifecycle of an observable
	Creating observables
	Subscribing to observables
	Disposing and terminating
	The create operator
	Creating observable factories
	Using other observable types
	Key points
	Challenges

	Where to Go From Here?

