

Table of Contents: Overview
About This Book Sample 4..

Book License 7...

What You Need 8..

Chapter 1: Hello, Realm! 9..

Chapter 2: Your First Realm App 24.....................................

Where to Go From Here? 42..

Realm - Building Modern Swift Apps with Realm Database

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4..

About the Author 6...
About the Editors 6...
About the Artist 6..

Book License 7...

What You Need 8..

Chapter 1: Hello, Realm! 9..
Realm Database 11...
Live objects 13...
Realm Studio 16..
Realm or realm? 18..
Installation 19..
Curious to know more? 22..
Where to go from here? 23..

Chapter 2: Your First Realm App 24.....................................
Getting started 25...
Realm objects 27..
Reading objects from disk 28..
Creating some test data 30..
Adding an item 32..
Reacting to data changes 34..
Modifying a persisted object 37...
Deleting items 38...
Challenge 41..

Where to Go From Here? 42..

Realm - Building Modern Swift Apps with Realm Database

raywenderlich.com 3

AAbout This Book Sample

Realm is a database that sports a custom-made engine which gets you started with a
single line of code and lets you read and write objects as if you just kept them around in
memory. With the RealmSwift API, you use native objects and can push the language to
its limits as you please.

The Realm: Building Modern Swift Apps with Realm Database book is a thorough
introduction to Realm. It goes over each topic in detail and works through some
practical examples that will give you enough experience to tackle real-life app
development problems.

This book sample contains the first two chapters:

• Chapter 1: Hello, Realm! introduces you to the concepts behind Realm and explains
how to download and install Realm and some useful tools you'll use throughout the
book.

• Chapter 2: Your First Realm App shows you how to build a simple To-do app that
utilizes the basic Create, Read, Update and Delete (CRUD) operations you'll want to
use in most applications.

We hope that this hands-on look inside the book will give you a good idea of what's
available in the full version and show you why Realm is an exciting proposition for any
app that needs to persist data. The full book is available for purchase at:

• https://store.raywenderlich.com/products/realm-building-modern-swift-apps-with-
realm-database

Enjoy!

— Marin and the Realm: Building Modern Swift Apps with Realm Database team

raywenderlich.com 4

Realm: Building Modern Swift Apps with Realm Database
By Marin Todorov

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Realm - Building Modern Swift Apps with Realm Database About This Book Sample

raywenderlich.com 5

About the Author
Marin Todorov is the author of this book. Marin is one of the
founding members of the raywenderlich.com team and has worked on
seven of the team’s books. He's an independant contractor and has
worked for clients like Roche, Realm, and Apple. Besides crafting
code, Marin also enjoys blogging, teaching and speaking at
conferences. He happily open-sources code. You can find out more
about Marin at www.underplot.com.

About the Editors
Shai Mishali is the technical editor of this book. He’s the iOS Lead
for the Tim Hortons mobile app and is involved in several open source
projects in his spare time — mainly the RxSwiftCommunity and
RxSwift projects. As an avid enthusiast of hackathons, Shai took 1st
place at BattleHack Tel-Aviv 2014, BattleHack World Finals San Jose
2014 and Ford’s Developer Challenge Tel-Aviv 2015. You can find him
on GitHub and Twitter @freak4pc.

Tammy Coron is the editor of this book. She is an independent
creative professional and the host of Roundabout: Creative Chaos. For
more information, visit tammycoron.com.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Realm - Building Modern Swift Apps with Realm Database About This Book Sample

raywenderlich.com 6

LBook License

By purchasing Realm: Building Modern Swift Apps with Realm Database, you have the
following license:

• You are allowed to use and/or modify the source code in Realm: Building Modern Swift
Apps with Realm Database in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Realm: Building Modern Swift Apps with Realm Database in as many apps as you want,
but must include this attribution line somewhere inside your app: “Artwork/images/
designs: from Realm: Building Modern Swift Apps with Realm Database, available at
www.raywenderlich.com”.

• The source code included in Realm: Building Modern Swift Apps with Realm Database
is for your personal use only. You are NOT allowed to distribute or sell the source
code in Realm: Building Modern Swift Apps with Realm Database without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 7

WWhat You Need

To follow along with this sample book, you'll need the following:

• Xcode 10 or later. Xcode is the main development tool for writing code in Swift. At a
minimum, you need Xcode 10 because it includes Swift 4.2. You can download the
latest version of Xcode for free from the Mac App Store, here: apple.co/1FLn51R.

If you haven’t installed the latest version of Xcode, please do so before continuing with
the book. The code covered in this book depends on Swift 4.2 and Xcode 10 — you may
get lost if you try to use an older version.

raywenderlich.com 8

1Chapter 1: Hello, Realm!

This book aims to introduce you, the reader, to the Realm database and how to create
powerful, reactive iOS apps with Swift and RealmSwift.

Realm finds the sweet spot between the simplicity of storing data as JSON on disk and
using heavy, slow ORMs like Core Data or similar that are built on top of SQLite. The
Realm Database aims to be fast and performant, and to provide the commodities that
mobile developers need such as working with objects, type-safety and native
notifications.

In this book, you are going to learn plenty about Realm and how to build iOS apps with
Realm; you’ll also pick up some tips and tricks along the way about getting the most
out of the platform.

Before getting to the code though, it’s important to know what Realm is, and what you
can expect from it — and what not to expect.

raywenderlich.com 9

Currently, Realm offers two products:

• Realm Database: A free and open-source object database.

• Realm Platform: A syncing server solution, which can be either self-hosted on your
servers or used as a cloud service via Realm Cloud.

The primary focus of this book is the free database product (the Realm Database),
which has been under active development for several years. It powers apps by some of
the biggest names in the App Store, including Adidas, Amazon, Nike, Starbucks, BBC,
GoPro, Virgin, Cisco, Groupon and many more who have chosen to develop their mobile
apps with Realm.

The database has been widely adopted due to its ease of use and the fact that it can be
used on both iOS and Android, unlike other database solutions:

Realm Platform, on the other hand, is a relatively new commercial product that allows
developers to automatically synchronize data not only across Apple devices but also
between any combination of Android, iPhone, Windows or macOS apps.

Realm Platform allows you to run the server software on your own infrastructure and
keep your data in-house, which most often suits large enterprises. Alternatively, you
can use Realm Cloud, which runs a Platform for you. You start syncing data very quickly
and only pay for what you use.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 10

The good news is that, once you know how to use the Realm Database to build iOS apps,
which is covered in this book, enabling data sync via a cloud service is a process that
takes just a few additional steps on top of what you’re already doing:

That being said, you can develop both personal and commercial projects without any
restrictions using the Realm Database.

If you decide that you’d like to have the app data synchronized automatically to your
cloud or across platforms to Android, watchOS, macOS, Windows or others, you can add
that feature later on.

For the time being, you’re going to master the Realm Database and then, in the last
chapter of this book, you'll look into using the database with Realm Cloud.

Realm Database
Realm Database fills the gap in the field of client-side data persistence. Indeed, there
have been a multitude of server products released in recent years, but not much has
happened for client-side needs.

Up until a few years ago, the defacto standard for building mobile apps on both iOS and
Android was SQLite: a fast, but generic, all-purpose SQL database format. SQLite has a
number of virtues, such as being written in C, which makes it fast, portable to almost
any platform, and highly conformant to the SQL standard.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 11

Realm, on the other hand, is a modern database solution that focuses on the needs of
modern apps. In that sense, it is not an all-purpose database. It is really good at reading
and writing data extremely fast, but it requires you to master the Realm API, so you
can’t simply use your existing SQL database skills.

So, it’s precisely because Realm is a new type of mobile database that you should not
expect to use it the same way as you would an old, generic SQL database.

That being said... good news, everyone!

The Realm APIs, built with modern, best-practices code, are arguably much easier to use
than working with the C API of SQLite from Swift.

In fact, even if you’ve never used Realm before, you can get started with the basics in
mere minutes. After all, the code speaks for itself:

class Person: Object {
 dynamic var firstName: String?
 dynamic var lastName: String?
}

let me = Person()
me.firstName = "Marin"
me.lastName = "Todorov"

try realm.write {
 realm.add(me)
}

This Swift code defines a new Person class, creates an instance and sets its object
properties, and finally tries to add the new object to a realm within a write transaction.

Have a look at how you get objects back from the database:

realm.objects(Person.self)
 .filter("age > 21")
 .sorted("age")

This Swift code asks Realm for all persisted objects of type Person, filters those to ones
of age 21 or more, and finally sorts the results.

Sometimes Realm code almost looks too easy to be used in a solid, robust database API.

You might be thinking: "I already figured out how to write data... why do I need to work
through the whole book then?" That’s a fair question to ask!

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 12

The Realm basics are really easy to pick up; you can start using Realm in your apps after
following a single tutorial. But, just like following a single tutorial on any topic, that
gives you a very limited view into Realm’s API and the specifics of building apps with
Realm.

This book aims to give you some detailed knowledge of designing and building object
schemas through several projects, and to give you enough experience to make informed
decisions when creating your next app with Realm.

Live objects
One of the cornerstones of the Realm Database philosophy is that modern apps work
with objects. Most persistent solutions will fetch data in the form of generic
dictionaries that aren’t type-safe and pollute the app code with excessive logic to cast
and convert fetched data to a format usable in the app.

Realm, on the other hand, uses classes to define its data schema (e.g., what types of
data can be persisted in the database) and the developer always works with objects,
both when persisting data to a Realm and when querying the database for results.

That helps to simplify the app code when compared to persisting data other ways. You
simply skip over boilerplate data-conversion code and always use native Swift objects.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 13

The fact that your data is always contained by objects allows for a number of other
Realm features; it introspects your classes and automatically detects any changes you
make to the database schema; it updates fetched data to the latest snapshot from the
disk; and much more.

Working with data objects directly and exclusively allows for the speed, robustness and
type safety that Realm is known for across platforms. In fact, the Realm Database Core
(open sourced on GitHub by Realm) is written in cross-platform C++ so it works exactly
the same way on Android, iOS, macOS or any other platform.

But don’t worry: You don’t ever need to use C++ in your own apps, unless you really
want to. Realm provides SDKs in different languages, which perform some lean
wrapping of the database core engine to give developers APIs that best fit their app
code.

And the best part of all is that since the C++ core is the same across platforms, the
native APIs also behave similarly. That really helps the iOS and Android developers on a
multi-disciplinary team stay in sync and work together.

The code isn’t exactly the same across platforms: It’s similar, but each language offers
different features that Realm uses to make its APIs feel as native as possible. For
example, this is how you would declare the interface of an object class in Objective-C:

@interface Person : RLMObject
@property NSString *firstName;
@property NSString *lastName;
@end

Defining the same class would look like this in Swift:

class Person: Object {
 dynamic var firstName: String?
 dynamic var lastName: String?
}

And, just for kicks, here’s the code in Kotlin:

open class Person: RealmObject() {
 var firstName: String? = nil
 var lastName: String? = nil
}

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 14

You get to work with native, custom classes in any of the supported languages that you
might be using to build your app, and Realm automatically read and writes the stored
data to disk.

Not only does Realm allow you to use your own custom classes to persist data, but you
can customize your own API in any way you’d like.

For example, if you are a big struct fan, you can simply add toStruct() and
fromStruct(_) methods on your Swift data object class to be able to quickly read data
as Swift structs from your database:

You’d be wrapping Swift objects into structs in a similar way to how Realm wraps C++
objects into Swift objects.

And since Realm data objects are fully fledged classes, you don’t need to limit yourself
to only using them for storage. They can include all kinds of additional logic that makes
sense in the context of data persistence. Your classes might sport methods to create
new instances, fetch instances from a given realm, and to convert data between custom
formats that you need to store on disk.

In any case, the Realm SDKs for each language try to give you the tools that you need
and provide you with native-feeling APIs to make your life as easy as possible.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 15

Realm Studio
Another of Realm’s benefits over other data persistence libraries is that it offers high-
fidelity data browser and editor app.

Realm Studio (https://realm.io/products/realm-studio) lets you inspect the contents of
your app’s realm files and change any of the data manually, if necessary.

You will use Realm Studio throughout this book to inspect the changes your code
commits to your Realm Database files. The app allows you to browse and modify all the
objects stored in a file, and, additionally, to browse, query and modify the stored data in
a spreadsheet-like manner.

In the final chapter of this book, you will use Realm Studio to connect to Realm Cloud.
Realm Studio is a streamlined way to get started with the Realm Platform, including
starter code for different platforms. At launch, Realm Studio will prompt you to browse
your cloud instances or explore demo apps:

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 16

Once you’re connected to a server in the cloud, you can browse and modify the data
manually as you would with any local file:

You will be using Realm Studio fairly often, so download and install the app for free
from https://realm.io/products/realm-studio.

SimPholders
Speaking of amazing tools, you might want to consider purchasing a tool called
SimPholders. It integrates very well both with your iPhone Simulator and with Realm
Studio, and it allows you to inspect your app’s database with a single click.

When you’re working on apps in Xcode and testing them in your iPhone Simulator,
SimPholders detects the activity and always gives you quick access to recently active
apps across all your simulators.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 17

When you select an app from the list above, you can quickly open folders of interest or
launch Realm Studio directly:

SimPholders is a useful tool and will make your life developing apps with Realm
considerably easier. You can get a 10-day trial or a (very affordable) license from the
app’s website:

• https://simpholders.com.

Realm or realm?
There are few different things being referred to as "realm" or "Realm" in this book
(either lower or upper case) so let's clear the air right now before it becomes source for
any confusion.

The name of the company that created the Realm database, the database itself, and a
particular database file are all called the same. In this book I tried to make the text
clearer by using a specific word casing, depending on what exactly I refer to.

Whenever the noun is uppercased as "Realm" that means I refer to the company or the
database name, for example: "Realm is an avid open source software supporter" or "The
Realm Database is lean and super-fast", but also "The Realm SDK offers completely safe
transactions".

If you see a lowercased "realm" that refers to the data in a given file, for example: "Add
two objects to your app's realm" or "You can have two different realm files:
default.realm and additional.realm".

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 18

Installation
Once you are convinced that you need Realm in your app (and I hope you already are!),
you need to add Realm as a dependency of your code. RealmSwift is available for free
from https://github.com/realm/realm-cocoa and detailed documentation can be found,
here: https://realm.io/docs/swift/latest.

Realm Objective-C and Realm Swift are published under the Apache 2.0 license. Realm
Core is separately available and is also published under the Apache 2.0 license.

The easiest way to include Realm and RealmSwift in your projects is via CocoaPods or
Carthage.

The projects in this book use CocoaPods. Even if you usually use a different
dependency manager, please make sure to use CocoaPods while you work through the
projects in this book.

Installing via CocoaPods
You install the Realm database in your app much like any other pod:

use_frameworks!

target "AppTarget" do
 pod "RealmSwift"
end

This will pull the Realm Core engine and the Swift language SDK and make them
available to your app’s code.

Installing RealmSwift in the book projects
As for the projects in this book, they all come with a prepared Podfile, but without the
dependency files included. We looked into this option, but it didn’t make sense to
include all the files for RealmSwift in every single project for each chapter in the book
download.

Before you start working on the book, make sure you have the latest version of
CocoaPods installed. You need to do that just once before starting to work on the book’s
projects. Usually, executing this in Terminal will suffice:

sudo gem install cocoapods

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 19

If you want to know more, visit the CocoaPods website:

• https://guides.cocoapods.org/using/getting-started.html.

In this book, you will work on two types of projects depending on the complexity of the
APIs they cover.

Xcode playgrounds

For simpler code experimentation, or examples that need a lot of iterations in which
you observe the output and change the code accordingly, you will use Xcode
playgrounds. For these projects, we’ve prepared a script that installs Realm and pre-
builds the code to save you from waiting around while in Xcode.

For these chapters, open the book’s source code folder and find the relevant chapter
folder. Copy the starter subfolder to a convenient location and use the Terminal app to
navigate to the newly copied folder.

Run the script ./bootstrap.sh to install Realm in the playground project and build the
source code. This might take a little while so you will be presented with a neat text-
based UI to track the progress:

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 20

Once the script has finished, it will open the playground in your default Xcode
installation, and you’ll be ready to start working through the chapter.

It might look a bit off at first but the generated project does not have any build targets
or an active scheme. To get started, click on the playground and start adding the
chapter’s code as instructed.

Should you experience errors getting the playground to run that's probably Xcode
acting up, try to rebuild the playground by running the bootstrap script again like so: ./
bootstrap.sh clean. This should solve any issues related to compiling the sources and
get you started working through the relevant book chapter.

Xcode projects

To give you more context, some of the chapters’ projects are in the form of complete
Xcode projects, which you can run in the iPhone Simulator or on your device.

For these chapters, open the book’s source code folder and find the relevant chapter
folder. Copy the starter subfolder to a convenient location and use the Terminal app to
navigate to the newly copied folder.

Install the project dependencies by executing:

pod install

When the process has finished, open the resulting Xcode workspace file.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 21

Note: If your CocoaPods is not up-to-date and fails to install Realm, run pod
update once to fetch the meta-information about the latest pods published.

Installing via Carthage
The Carthage installation instructions as described in the Realm documentation are as
follows:

• Add Realm to your Carthage file: github "realm/realm-cocoa".

• Run carthage update to fetch and build Realm.

• Drag RealmSwift.framework and Realm.framework from the Carthage/Build/
sub-folder into the Linked Frameworks and Libraries section of your project’s
General section.

This will make RealmSwift available in your app. There is, however, an extra step you
need to take before submitting to the App Store, which works around a bug in app
submission. You can read more online in Realm’s own docs:

• https://realm.io/docs/swift/latest#installation.

Installing like a dynamic framework
For those that don’t use dependency managers, Realm provides pre-built frameworks.
Instructions on how to integrate those in your project can be found at:

• https://realm.io/docs/swift/latest/#installation

Curious to know more?
Realm is known to be very active in the developer community. The company has
launched a number of important iOS open-source projects such as:

• Realm Database: A forever-free and open-source database for both personal and
commercial projects.

• SwiftLint: A tool that enforces strict style guidelines in your Swift code.

• Jazzy: A modern tool for generating Swift documentation, which is the defacto
standard for building API docs from Swift source code.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 22

Besides these popular projects, Realm’s GitHub account https://github.com/realm is
packed with demo apps showcasing how to use Realm, additional Realm-based libraries
and more.

Additionally, the Realm Academy offers an almost endless amount of recorded
conference talks, slides, articles and more:

• https://academy.realm.io.

There, you will find the specialized Realm Academy path. You can also explore other
interesting Realm-related talks, video series and blog posts, here:

• https://academy.realm.io/section/realm

Where to go from here?
Even though there is plenty of information out there about learning Realm, the most
detailed and in-depth resources on learning how to use the Realm Database in your
apps could only be found in a book. Namely, this book! I hope you will enjoy learning
from this light-hearted but thorough “missing” Realm manual.

In the next chapter, you’ll learn how to quickly build a complete iOS app powered by the
Realm database.

Realm - Building Modern Swift Apps with Realm Database Chapter 1: Hello, Realm!

raywenderlich.com 23

2Chapter 2: Your First Realm
App

In the previous chapter, you learned about the Realm Database, how it works and what
problems it can solve for you as a developer.

Now you’ll take a leap of faith and dive right into creating an iOS app that uses Realm
to persist data on disk while following this tutorial-style chapter.

The idea of this chapter is to get you started with Realm without delving too much into
the details of the APIs you’re going to use. This will hopefully inspire you to try and
find the right APIs, figure out what they do, and perhaps even browse through
RealmSwift’s source code.

Have no fear though, as the rest of this book will teach you just about everything there
is to learn about Realm in detail. You’re going to learn the mechanics behind everything
you’re about to do in this chapter and much, much more.

I invite you to work through this chapter’s exercises with an open mind. This chapter is
simply about getting a feeling for using Realm in your Swift code.

raywenderlich.com 24

Getting started
The theme of to-do apps as an educational tool might be getting old by now, but the
simple truth is that a to-do app does a great job of demonstrating how to build an app
based on data persistence. A to-do app includes features like fetching a list of to-do
items from disk, adding, modifying and deleting items, and using the data with some of
the common UIKit components such as a table view, an alert view, buttons and more.

In this chapter, you’re going to work on a to-do app that’s built on the Realm Database.
This will be very useful as you learn the basics of CRUD operations with Realm.

Note: Create, Read, Update and Delete are the basic persistence operations you
can perform on mostly any data entity. Often times, this set of operations will be
referred by the acronym CRUD. Just don’t mix up a CRUD application with a crude
application!

To get started, open the macOS Terminal app (or another similar app of your choice),
navigate to the current chapter’s starter project folder, run pod install (as described in
Chapter 1) and open the newly created Xcode workspace.

Note: The starter projects in this book contain some UI boilerplate and other non-
database related code. Sometimes Xcode might show code warnings since the
starter code "misses" some parts that you will add while working through the tasks
in the respective chapter.

Open Main.storyboard to get an idea of the app’s basic structure:

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 25

The project consists of a single table view controller with a custom to-do item cell.

The source code structure follows a general pattern for all of the projects in this book:

• The Classes folder is a catch-all location for code that doesn’t fall under one of the
other folders mentioned below. In this project, it includes an extension on
UIViewController to add a simple API to present alerts on screen, as well as a handy
extension on UITableView.

• Assets is where you’ll find the app’s launch screen, meta information .plist file and
the asset catalog.

• Scenes contains all of the app’s scenes — including their view controller, view and
view-model code, when available. In this project, you have a single view controller
and a custom table cell class.

• Entities contains the Realm object classes you’ll persist to disk. This is practically
your data models but backed by Realm. You have a single class called ToDoItem in this
project. In later chapters, you’ll work on more complex database schemas, but this
simple schema will suffice for now.

The projects in this book all follow a similar code structure, but you aren’t forced to use
this structure in your own work. We’ve provided it as a guideline so you’ll know where
to look for files as later projects in this book become more complicated.

If you run the starter app right now, you’ll see that it compiles and displays an empty
to-do list on screen:

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 26

Realm objects
Realm objects are basically a standard data model, much like any other standard data
model you’ve defined in your apps. The only difference is they’re backed by Realm
persistence and abilities.

You won’t dive into Realm objects at this stage, as you’ll be going into more detail on
how to define Realm models and persist them in the next section of this book. In this
chapter, you’re going to waltz through these model definitions and get straight into
action.

In fact, the MyToDo starter project already includes a class that will serve as the data
model for storing to-do items. Open Entities/ToDoItem.swift and notice the ToDoItem
class.

There are a few interesting points to note, here, but you’ll learn more about these
subjects in the next chapters.

Dynamic properties

First and foremost, you should recognize that the ToDoItem class subclasses Object.
Object is a base class all of your Realm-backed data entities must inherit from. This
allows Realm to introspect them and persist them to disk.

Another interesting oddity in this class is that all of its properties are defined as
dynamic:

dynamic var id = UUID().uuidString
dynamic var text = ""
dynamic var isCompleted = false

This allows Realm to implement some custom, behind-the-scenes logic, to
automatically map these properties to the data persisted to disk.

With the help of the dynamic keyword, a model class serves as a loose proxy between
your app’s code and the data stored on disk, as seen in this simple schema:

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 27

Primary key

ToDoItem also features a convenience init(_) and overrides a static method called
primaryKey() from its parent class. Realm will call primaryKey() to decide which
property will be used as the object’s primary key.

The primary key stores unique values that are used to identify objects in the database.
For example, if you’re storing Car objects in the database, their uniquely identifying
primary key can be their registration plate:

To make things easy, the id property, which is the primary key of ToDoItem, is
automatically given a unique string UUID value. The UUID Foundation class lets you
easily generate unique identifiers like these:

DB4722D0-FF33-408D-B79F-6F5194EF018E
409BC9B9-3BD2-42F0-B59D-4A5318EB3195
D9B541AF-16BF-41AC-A9CF-F5F43E5B1D9B

Ordinary code

You’ll find that the class looks very much like a common Swift class. This is one of the
greatest things about Realm! You don’t have to go out of your way to adapt your code to
work with the persistence layer. You always work with native classes like ToDoItem,
while Realm does the heavy-lifting behind the scenes automatically.

To recap: ToDoItem is a class you can persist on disk because it inherits from Realm’s
base Object class. The class is pretty much ready to go, so you can start adding the code
to read and write to-do items from and to disk.

Reading objects from disk
In this section, you’re going to write code to retrieve any persisted ToDoItem objects and
display their data in the main scene of your app.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 28

Start off by adding a method to fetch all to-do items from the Realm file on disk. Open
Entities/ToDoItem.swift and insert in the extension at the bottom:

static func all(in realm: Realm = try! Realm()) -> Results<ToDoItem> {
 return realm.objects(ToDoItem.self)
 .sorted(byKeyPath: ToDoItem.Property.isCompleted.rawValue)
}

You just added a static all(in:) method, which, by default, fetches all to-do items from
your default Realm file. Having a realm parameter with a default value allows you to
easily work with the default Realm, but also leaves room for using an arbitrary Realm, if
needed.

You can actually have more than a single Realm file in your app, as you might want to
separate out the data your app uses into different “buckets.” You’ll learn more about
this in Chapter 7, “Multiple Realms/Shared Realms.”

Note: You may be outraged by the use of try! and of course you will have right to
be. For brevity’s sake, the book code will only focus on Realm’s APIs but if you’d
like to learn more about error handling or other Swift-related topics do check the
Swift Apprentice book, available on raywenderlich.com where we cover Swift itself
in great detail.

If you look further down the code, you’ll spot the objects(_) and sorted(byKeyPath:)
methods, which are some of the APIs you’re going to use throughout this book.
objects(_) fetches objects of a certain type from disk, and sorted(byKeyPath:) sorts
them by the value of a given property or key path.

In your code, you ask Realm to return all persisted objects of type ToDoItem and sort
them by their isCompleted property. This will sort incomplete items to the start of the
list and completed ones to the end. The method returns a Results<ToDoItem>, a generic
results type, which gives you dynamic access to the result set.

Next up, you will update your view controller to use this new method to fetch and
display the to-do items.

Open Scenes/ToDoListController.swift and spot the items property towards the top of
the file. It is an Optional type where you’ll store the result fetched from Realm.

Next, append to viewDidLoad():

items = ToDoItem.all()

This code uses your new all(in:) method to ask Realm for all persisted ToDoItems.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 29

Currently, the app doesn’t display any items when launched, since you don’t have any
data stored. You’ll fix that by adding some default to-do items in case the user hasn’t
created any.

Creating some test data
Open AppDelegate.swift and add inside the empty initializeRealm() method:

let realm = try! Realm()
guard realm.isEmpty else { return }

You start by getting an instance of the default Realm by initializing it without any
arguments. Then, you check if the Realm is empty using the handy isEmpty property. If
the Realm isn’t empty, you simply return since there’s no need to add test data.

Don’t worry about the creation of a new Realm in the first line. Initializing a Realm
object simply creates a handle to the file on disk. Furthermore, this handle is shared
across your app and returned each time you use Realm() on the same thread. Therefore,
you’re not duplicating your data, or consuming any extra memory — all pieces of code
in this app work with the same Realm instance and the same file on disk.

Next, add code to create some test data, right after your guard statement:

try! realm.write {
 realm.add(ToDoItem("Buy Milk"))
 realm.add(ToDoItem("Finish Book"))
}

This quick piece of code persists two objects to disk. And by quick, I mean that it’s
literally only four lines of code!

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 30

You start a write transaction by using realm.write and add two new ToDoItem objects
from within the transaction body. To persist objects, you simply create them as you
would any other class, and hand them off to Realm.add(_) which adds them to your
Realm.

Last but not least, call initializeRealm from
application(_:didFinishLaunchingWithOptions:). Just before return true, add the
following:

initializeRealm()

Build and run the project to see your new code in action:

That was easier than expected, wasn’t it? To be fair, the starter project did include some
code to make your life a tad less complicated, but it’s clear how easy it is to fetch items
from disk and persist new ones when needed.

Open Scenes/ToDoListController.swift one more time and look for the
UITableViewDataSource implementations in the bottom of the file:

• tableView(_:numberOfRowsInSection:) uses items?.count to return the number of
objects fetched in the items result set.

• tableView(_:cellForRowAt:) uses an index subscript to get the object at the
required index path items?[indexPath.row] and use its properties to configure the
cell.

Additionally, the next class extension defines some delegate methods from the
UITableViewDelegate protocol that enable swipe-to-delete on table cells. You’ll write
the code to actually delete items a bit later in this chapter.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 31

Adding an item
Next, you’ll add code to allow the user to add new to-do items to their list.

Since this is one of the CRUD operations, add the relevant method to the ToDoItem
class. Open Entities/ToDoItem.swift and add right below your all(in:) method:

@discardableResult
static func add(text: String, in realm: Realm = try! Realm())
 -> ToDoItem {
 let item = ToDoItem(text)
 try! realm.write {
 realm.add(item)
 }
 return item
}

add(text:in:) lets you create a new ToDoItem instance and persist it to a realm of your
choice. This is a useful shortcut when you don’t intend to use an object outside of the
context of the database.

You’re already familiar with the type of code above. You create a new ToDoItem instance,
open a write transaction, and use Realm.add(_) to persist the object.

You can now add some UI code to your view controller to let the user input new to-do
items and add them to the app’s realm.

Back in Scenes/ToDoListController.swift, scroll to addItem(), which is a method
already connected to the + button in your navigation bar. Add inside addItem():

userInputAlert("Add Todo Item") { text in
 ToDoItem.add(text: text)
}

userInputAlert(_) is a UIViewController extension method (found in the Classes
folder of the starter project) that presents a new alert controller on the screen and asks
the user to enter some text. Once the user taps OK, you’ll receive the user-provided text
in a closure.

In the callback closure, you use the new method you just created to create and persist a
new to-do item to disk: ToDoItem.add(text: text).

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 32

Run the project one more time and tap on the + button. userInputAlert(_:_:) will
display an alert on screen and let you enter the text for a new to-do.

Tapping OK will execute your callback and save the new to-do item to disk.

As you might have noticed, the table view still only displays the two items you fetched
when initially loading the view controller.

Use Realm Studio to open the app database default.realm from the Simulator folders
and check its contents. For this, you can use the SimPholders tool as mentioned in
Chapter 1, “Hello Realm”:

Realm Studio displays a list of all classes stored in your file on the left-hand side and a
spreadsheet-like UI on the right side letting you browse all the data persisted in the file:

Hey, that new to-do item has been successfully added — you can find it at the bottom of
the list!

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 33

In fact, if you re-run the project, you’ll see it appear in your app as well:

It seems like you need a way to refresh the table view whenever the database changes.

Reacting to data changes
One sub-optimal way to do this is to refresh the table view from addItem(). But going
down this path means you’ll need to refresh the table view from every method that
modifies your data, such as when you delete an item, or set its completion status, and so
on. Leaving that aside, the real issue is how to refresh the table if you commit a change
from another class, which runs somewhere in the background, and is completely
decoupled from the view controller?

Fortunately, Realm provides a powerful solution to this. Realm’s own change
notifications mechanism lets your classes read and write data independently and be
notified, in real-time, about any changes that occurred.

Realm’s own notification system is incredibly useful because it lets you cleanly separate
your data persistence code. Take a look at an example that uses two classes:

• A networking class, which persists JSON as Realm objects on a background queue.

• A view controller displaying the fetched objects in a collection view.

Without Realm and change notifications, you’ll need to make one class a delegate of the
other (in a way that inevitably couples them) or use NotificationCenter to broadcast
update notifications.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 34

With Realm, the two classes can cleanly separate their concerns. One will only write to
the database the other only reads and observes changes:

With this setup, it would be trivial to do something like test the class that writes objects
to the database without creating a view controller. In addition, in the event the app
goes offline, the view controller won’t care at all about the fact the class responsible for
writing objects isn’t doing any work at the moment.

Relying on Realm’s built-in change notifications lets you separate concerns extremely
well and keeps your app’s architecture simple and clean.

See how that looks in practice.

Open Scenes/ToDoListController.swift and add a new property at the top of the class:

private var itemsToken: NotificationToken?

A notification token keeps a reference to a subscription for change notifications. You’ll
use notifications throughout the book so you’ll get to learn all about them, starting in
Chapter 6, “Notifications and Reactive Apps.”

Continue in viewWillAppear(_) where you’ll set your notification token:

itemsToken = items?.observe { [weak tableView] changes in
 guard let tableView = tableView else { return }

 switch changes {
 case .initial:
 tableView.reloadData()
 case .update(_, let deletions, let insertions, let updates):
 tableView.applyChanges(deletions: deletions, insertions: insertions,
updates: updates)
 case .error: break
 }
}

You call observe(_) on the to-do items result set, which lets Realm know that you want
to receive updates any time the result set changes.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 35

For example, if you add a to-do item, Realm will call your observe callback. If you
remove a to-do item, Realm will call your callback. If you change a property on one of
your to-do items... yes, you guessed right — Realm will call your callback.

The observe(_) callback closure is the place to implement any UI code that will reflect
the latest data changes in your app’s UI. In the code above, you receive detailed
information about what items have been inserted, modified or deleted. If any changes
occurred in your result set, you call the applyChanges(_) extension method to apply
them on screen, and you also take care of simply reloading the table view with the
initial data at the time of observing changes.

Note: The callback is called on the same thread you create the subscription on. In
your code above you create the subscription in viewWillAppear(_) and is,
therefore, safe to update the app’s UI without any extra checks.

That’s as far as you’ll take this right now. Later on, you’ll learn about the notification
data in greater detail.

Next, since you start observing items in viewWillAppear(_), it makes sense to stop the
observation in viewWillDisappear(_).

Add the following to viewWillDisappear(_):

itemsToken?.invalidate()

invalidate() invalidates the token and cancels the data observation.

Run the project again. This time, as soon as you enter a new to-do item, it’ll appear in
your list with a nice accompanying animation:

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 36

Now that you have the table all reactive and animated, you can add the remaining
CRUD operations. Thanks to Realm’s change notifications, the table will reflect any
changes automatically. Isn’t that great?

Modifying a persisted object
You just learned how to add new objects to your app’s Realm, but how would you modify
an object that has already been persisted?

Obviously, you first need to fetch the object from the database and then modify it
somehow. In this section of the chapter, you’re going to add code to complete (and un-
complete?) a to-do task.

Open Entities/ToDoItem.swift and add a new method below add(text:in:):

func toggleCompleted() {
 guard let realm = realm else { return }
 try! realm.write {
 isCompleted = !isCompleted
 }
}

toggleCompleted() is a new method that allows you to easily toggle the status of a to-
do item from incomplete to completed and vice-versa.

Every object persisted to a realm has a realm property, which provides you with quick
access to the Realm where the object is currently persisted on.

You start by unwrapping the ToDoItems’ realm and start a new write transaction, just
like you did before.

From within the transaction, you toggle isCompleted. As soon as the transaction has
been successfully committed, that change is persisted on disk and propagated
throughout your observation to change notifications. You can now add the code to
toggle the item whenever the user taps the right button on each to-do item cell.

Switch back to Scenes/ToDoListController.swift and add the following method below
addItem():

func toggleItem(_ item: ToDoItem) {
 item.toggleCompleted()
}

This method calls your newly created toggleCompleted() on a given to-do item object.
You can use toggleItem(_) in the code that configures each individual to-do cell.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 37

Scroll down to tableView(_:cellForRowAt:) and insert inside the callback closure for
cell.configureWith:

self?.toggleItem(item)

When the user taps the cell button, it will call your code back and invoke
toggleItem(item), which will toggle that item’s status.

That should take care of toggling to-do items in your project.

Run the app one more time and try tapping the status button of some of those to-do
items:

As soon as you modify any of the to-do objects, the view controller is being notified
about the change and the table view reflects the latest persisted data.

You’ll also notice that items you mark as completed will animate towards the bottom of
the list. This is because Realm’s Results class reorders the objects in the collection
according to the sorting you applied when you initially started observing changes. If
you look back to ToDoItem.all(in:), you’ll see you’re sorting the results by their
isCompleted property — incomplete tasks first and completed tasks last.

Deleting items
Last but not least, you’re going to let the user delete items from their list.

This is quite similar to adding and modifying items: You’re going to add a new method
on ToDoItem and then add the relevant code in the view controller to react to user
events.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 38

Thanks to the two UITableViewDelegate methods already included in the starter code of
ToDoListController, the table view already reacts to left-swipes and displays a red
Delete button:

This provides a good starting point for this chapter’s last task. Let’s get down to
business!

Open Entities/ToDoItem.swift and add one last method to the extension, below
toggleCompleted():

func delete() {
 guard let realm = realm else { return }
 try! realm.write {
 realm.delete(self)
 }
}

Just like before, you get a reference to the object’s Realm and then start a write
transaction to perform your updates.

Note: As you’ll learn later, if you try modifying a persisted object without starting
a write transaction, your code will throw an exception. You can only modify
managed objects inside a Realm write transaction.

Since the class is a Realm object, you can simply call realm.delete(self) to delete the
current object from the realm.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 39

Finally, you need to add a few more lines in your view controller to call your new
delete() method. Back in Scenes/ToDoListController.swift add below
toggleItem(_:):

func deleteItem(_ item: ToDoItem) {
 item.delete()
}

Then, scroll down to tableView(_:commit:forRowAt:) and append at the bottom:

deleteItem(item)

This will call your new deleteItem(_) method, which in turn invokes the delete()
method on the to-do item.

Run the app one last time, swipe left on a to-do item, and tap Delete:

Just like the previous features you added, the deletion of the object from the Realm is
reflected in the table, accompanied by a pleasant animation.

With that last piece of code, your simple CRUD application is complete. You’ve learned
a bit about fetching objects from a Realm file, adding and modifying existing objects,
and how to react to data changes and keeping your read and write code separate.

In fact, you already possess the knowledge to create simple Realm apps! However, since
working with Realm has so many advantages, you’ll want to expand your knowledge as
soon as possible. Worry not, we’ve got you covered. The rest of this book provides
everything you’ll need to learn about Realm in detail.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 40

Challenge
Challenge: Enhance your to-do app with more features
To warm up for the next chapter, work through a few small tasks to polish your to-do
app.

Start by modifying the existing code so it only allows the deletion of completed tasks.
Way to simulate ticking items off the list!

Finally, add a feature that allows the user to tap a cell and be presented with an alert
where they can edit the current to-do item’s text. Once they close the alert, the text
change will be persisted, and the UI should be updated accordingly.

This chapter didn’t go into much detail in regards to the various available APIs, so don’t
worry too much if you can’t figure out how to complete this challenge. You can open
the challenge folder of this chapter and peek at the completed solution code. At this
point, it’s not expected you can figure out everything on your own.

These challenges might not be very complex, but they’ll get you writing some simple
Realm code to warm up for the grand tour of Realm’s object features in the next
chapter.

Realm - Building Modern Swift Apps with Realm Database Chapter 2: Your First Realm App

raywenderlich.com 41

WWhere to Go From Here?

We hope you enjoyed this sample of Realm: Building Modern Swift Apps with Realm
Database!

If you enjoyed this sample, be sure to check out the full book, which contains the
following chapters:

1. Hello Realm!: Realm finds the sweet spot between the simplicity of storing data as
JSON on disk and using heavy, slow ORMs like Core Data or similar that are built on
top of SQLite. In this book you are going to learn plenty about Realm, how to build
iOS apps with Realm, and you’ll pick up some tips and tricks along the way about
getting the most out of the platform.

2. Your First Realm App: In the previous chapter, you learned about the Realm
Database, how it works and what problems it can solve for you as a developer. Now
you'll take a leap of faith and dive right into creating an iOS app that uses Realm to
persist data on disk while following this tutorial-style chapter.

3. Object Basics and Data types: You now have a grasp of the easy and clean way of
writing Realm-related code. In this chapter, you’ll dive deeper into Realm’s Swift
API and go over many of the available classes and their methods in order to get a
solid understanding of Realm’s superpowers, as well as some of its limitations.

4. Schema relationships: You’ve mastered your object-type properties and your
primitives, learned how to add a primary key and indices, and other important
details. Your data, however, isn’t isolated when in a Realm. You can have many
different objects connected to each other in all sorts of useful and meaningful ways.
This chapter will teach you all about building powerful and efficient relationships
between objects.

raywenderlich.com 42

5. Reading and Writing Objects: You’ve had a sneak peek into persisting objects and
reading them back, but you barely scratched the surface of dealing with stored
objects, as you’ll realize in this chapter. In the first half of this chapter you’ll look
into fetching, querying, and sorting persisted data from Realm. In the second half,
you will cover the Realm APIs that let you add, update, and delete objects in your
Realm.

6. Notifications and Reactive Apps: You are probably eager to use the in-depth
knowledge you soaked up working through the last few chapters in practice, and
rightfully so. In this chapter, you’ll learn about Realm’s built-in notification APIs.
Realm features a rather clever system of detecting any changes, regardless of the
thread or process responsible for those changes, and deliver notifications to any
observers.

7. Realm Configurations: In this chapter that covers Realm configurations, you’ll
take a step back (or is it one forward?), dig into working with the Realm class itself,
and learn about how to configure Realm using Realm.Configuration. You’ll learn
how to work with different Realm files on disk and in-memory, as well as how to use
advanced features such as data encryption.

8. Multiple Realms / Shared Realms: In this chapter, you’re going to make use of
your existing Realm skills while learning some new ones. You’re going to use
multiple configurations, read and write data, use notifications to build reactive UI,
and explore new topics like sharing data between your app and a Today extension.

9. Dependency Injection and Testing: In this chapter, you’re going to touch on two
important topics: how to use dependency injection to improve the architecture of
your Flash Cards apps, and how to write both synchronous and asynchronous tests
powered by Realm. This chapter won’t delve into topics such as test driven
development, but will instead focus specifically on tips and tricks for testing classes
that use Realm objects and depend on Realm-specific functionality such as change
notifications.

10. Effective Multi-threading: Many of the issues you would experience with database
ORMs and/or other databases are rooted in asynchronous, multi-threaded code.
Accessing your data from concurrent threads in an efficient and safe manner is,
unsurprisingly, not very straightforward and quite error-prone. Realm saves you
from the hassles of over-thinking concurrent threads, since it’s been planned with a
deeply integrated multi-threading strategy which makes concurrent access to the
database a walk in the park.

Realm - Building Modern Swift Apps with Realm Database Where to Go From Here?

raywenderlich.com 43

11. Beginning Realm Migrations: Nothing in life (and code) remains static forever. So
what happens, then, when the app you’re working on becomes wildly successful and
you need release a new version, and then another one, and another one? In this
chapter you’ll learn how you can migrate the schema of a Realm file as it evolves
alongside your app.

12. Advanced Schema Migrations: In this chapter, you’re going to build a more
complex migration in an Xcode project. The demo is designed in such a way that
you can build three different versions of the same app. This will allow you to write
code and simulate real-life app upgrades, all from the comfort of a single Xcode
project.

13. Extending Realm with Custom Features: In this chapter, you’ll work on adding a
new database feature to Realm: hard and soft cascading deletes. While this won’t be
a universal drop-in feature, it will give you direction on how and when to extend the
database.

14. Real-Time Sync with Realm Cloud: In this chapter, you’ll learn more about Realm
Platform and take Realm Cloud for a test drive. You’ll develop a working chat app
using Realm Cloud as your backend.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/realm-building-modern-swift-apps-with-realm-
database

We hope you enjoy the book! :]

— Marin and the Realm: Building Modern Swift Apps with Realm Database team

Realm - Building Modern Swift Apps with Realm Database Where to Go From Here?

raywenderlich.com 44

