

Table of Contents: Overview
About This Book Sample 4..

What You Need 10...

Book License 11..

Book Source Code & Forums 12...

Chapter 1: What Is Asynchronous Programming? 13...

Chapter 15: Coroutines on Android: Part 1 28................

Where to Go From Here? 68..

Kotlin Coroutines by Tutorials Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4..

What You Need 10...

Book License 11..

Book Source Code & Forums 12...

Chapter 1: What Is Asynchronous Programming? 13...
Providing feedback 13...
Why multithreading? 15..
Interacting with the UI thread from the background 16..
Handling work completion using callbacks 19...
Indentation hell 21..
Using reactive extensions for background work 22...
Diving deeper into the complexity of Rx 23..
A blast from the past 24..
Explaining coroutines: The inner workings 25...
Variations through history 25...
Key points 26...
Where to go from here? 27..

Chapter 15: Coroutines on Android: Part 1 28................
Getting started 29...
Does Android really need coroutines? 31..
Coroutines 62..
Introducing Anko 64...
Key points 65...
Where to go from here? 67..

Where to Go From Here? 68..

Kotlin Coroutines by Tutorials Sample

raywenderlich.com 3

AAbout This Book Sample

Kotlin Coroutines by Tutorials will give you the tools you need to solve common
programming problems using asynchronous programming.

The importance of concurrency is discovered quite early on by people who start with
Android development. Android is inherently asynchronous and event-driven, with strict
requirements as to on which thread certain things can happen. Add to this the often-
cumbersome Java callback interfaces, and you will be trapped in spaghetti code pretty
quickly (aptly termed as “Callback Hell”). No matter how many coding patterns you use
to avoid that, you will have to encounter the state change across multiple threads in
one way or the other.

The only way to create a responsive app is by leaving the UI thread as free as possible,
letting all the hard work be done asynchronously by background threads.

We are pleased to offer you this sample from the full Kotlin Coroutines by Tutorials book
that will introduce you to these concepts and give you a chance to practice them in our
hands-on By Tutorials style.

The chapters that follows introduce you to the foundational concepts of asynchronous
programming and how to get started with coroutines on Android.

This sample includes:

• Chapter 1: What Is Asynchronous Programming?: Before getting you into the
magic of coroutines, we’ll help you understand what problem coroutines will solve
for you. You’ll learn what it means to be asynchronous and how to escape from an
“indentation hell.” This is a fundamental chapter in order to understand the basics of
multi-threading and concurrent programming.

raywenderlich.com 4

• Chapter 15: Coroutines on Android: Part 1: Learn how you can manage
concurrency and multi-threading in Android and why coroutines can help you
simplify and optimize code in many ways.

The book is ready for purchase at:

• https://store.raywenderlich.com/products/kotlin-coroutines-by-tutorials.

Enjoy!

The Kotlin Coroutines by Tutorials Team

Kotlin Coroutines by Tutorials Sample About This Book Sample

raywenderlich.com 5

Kotlin Coroutines by Tutorials
By Filip Babić and Nishant Srivastava

Copyright ©2018 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 6

Dedications
"To my friends and family. And mostly to my loved one. Thank you
for being patient and understanding, when I couldn’t grab a cup of

coffee or tea and catch up. Huge thanks to everyone who’s supported
me throughout the entire process, with positive and motivational

encouragement. This wouldn’t have gone as nearly as smooth
without you."

— Filip Babić

"I would like to thank the many people who have made this book
possible. To my father, who gave me the desire to be a curious soul

and learn more. To my mom, who has supported me all along
whenever I have had doubts about my own capabilities as a writer. To

my friends, Saachi Chawla and Kirti Dohrey, who have always
believed in me during my ups and downs. To people who have
directly or indirectly been my mentor and helped me through

understanding technology at a deeper level whenever I found myself
stuck. And lastly, to the team at raywenderlich.com, my co-author,

editors and everyone involved in making this book a reality."

— Nishant Srivastava

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 7

About the Authors
Nishant Srivastava is an author on this book. Nishant is a Sr.Android
Engineer at Soundbrenner in Berlin, Germany and an open source
enthusiast who spends his time doodling when not hacking on
Android. He is a caffeine-dependent life-form and can be found either
talking about android libraries or advocating that coffee is the elixir
of life at community gatherings. He has been part of two startups in
the past (Founding Team Member at OmniLabs, Inc. and one of the
first employees at Silverpush) with experience in Android SDK
Engineering and Audio Digital Signal Processing(DSP) on Android.
While working at his past company (Silverpush), he developed the
company’s patented UAB (Unique Audio Beacon) Technology.

Filip Babić is an author of this book. He is an experienced Android
developer from Croatia, working at the Five Agency, building world-
known applications, such as the RosettaStone language-learning
application and AccuWeather, the globally known weather reporting
app. Previously he worked at COBE d.o.o., a German-owned mobile
agency, which is partners with the biggest German media company.
He's enthusiastic about the Android ecosystem, focusing extensively
on applying Kotlin to Android applications, and building scalable,
testable and user-friendly applications. Passionately building up good
spirit in local development groups in Croatia, focusing on lectures,
education, and engagement of new, aspiring developers in the
Croatian IT community. But also pursuing global conferences,
meetups, and IT fests. Altruistic when it comes to consulting and
mentoring, trying to give help to everyone, whenever possible,
motivated by the ideology that the Android ecosystem we live in is
only as good as we make it.

About the Editors
Eric Crawford is a tech editor of this book. Eric is a Senior Software
Developer at John Deere, where he bounces between iOS and Android
development. Before coming to Deere he did freelance mobile
development and serverside web development utilizing Java. In his
free time he likes to dabble into other platforms like IOT and cloud
computing.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 8

Massimo Carli is the final pass editor of this book. Massimo has been
working with Java since 1995 when he co-founded the first Italian
magazine about this technology (http://www.mokabyte.it). After
many years creating Java desktop and enterprise application, he
started to work in the mobile world. In 2001 he wrote his first book
about J2ME. After many J2ME and Blackberry applications, he then
started to work with Android in 2008. The same year he wrote the first
Italian book about Android; best seller on Amazon.it. That was the
first of a series of 8 books. he worked at Yahoo and Facebook and he's
actually Engineering Tech Lead at Lloyds. He's a musical theatre lover
and a supporter of the soccer team S.P.A.L.

Manda Frederick is an editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 9

WWhat You Need

To follow along with this book, you'll need the following:

• IntelliJ IDEA Community Edition 2018.2: Available at https://www.jetbrains.com/
idea/. This is the environment in which you'll develop most of the sample code in
this book.

• Jave SE Development Kit 8.: Most of the code in this book will be run on the Java
Virtual Machine or JVM, for which you need a Java Development Kit or JDK. The JDK
can be downloaded from Oracle at http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

• Android Studio 3.x.: For the examples about Android described in Section 3, you
can the IDE available at https://developer.android.com/studio/.

If you haven't installed the latest versions of IntelliJ IDEA Community Edition and JDK
8, be sure to do that before continuing with the book. Chapter 2: "Setting Up Your Build
Environments" will show you how to get started with IntelliJ IDEA to run Kotlin
coroutines code on the JVM.

raywenderlich.com 10

LBook License

By purchasing Kotlin Coroutines by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Kotlin Coroutines by Tutorials
in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Kotlin Coroutines by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Kotlin
Coroutines by Tutorials, available at www.raywenderlich.com.”

• The source code included in Kotlin Coroutines by Tutorials is for your personal use
only. You are NOT allowed to distribute or sell the source code in Kotlin Coroutines by
Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 11

BBook Source Code &
Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 12

1Chapter 1: What Is
Asynchronous Programming?
By Filip Babić

The UI (user interface) is a fundamental part of almost every application. It’s what
users see and interact with in order to do their tasks. More often than not, the
applications do complex work, such as talking to external services or processing data
from a database. Then, when the work is done, it shows a result, mostly in some form of
a message.

The UI must be responsive. If the work at hand takes a lot of time to complete, it’s
necessary to provide feedback to the users so that they don’t feel like the application
has frozen, for example, or that they didn’t click a button properly — or perhaps that
the feature doesn’t work at all.

In this chapter, you’ll learn how to provide useful information to the users about what’s
happening in the application and what different mechanisms exist for working with
multiple tasks. You’ll see what problems arise while trying to do complex and long-
running synchronous operations and how asynchronous programming comes to rescue.

You’ll start off by analyzing the flow of a function that deals with data processing and
provides feedback to the user.

Providing feedback
Suppose you have an application that needs to upload content to a network. When the
user selects the Upload button, loading bars or spinners appear to indicate that
something is ongoing and the application hasn’t stop working. This information is
crucial for a good user experience since no one likes unresponsive applications. But
what does providing feedback look like in code?

raywenderlich.com 13

Consider the following task wherein you want to upload an image but must wait for the
application to complete the upload:

fun uploadImage(image: Image) {
 showLoadingSpinner()
 // Do some work
 uploadService.upload(image)
 // Work’s done, hide the spinner
 hideLoadingSpinner()
}

At first glance, the code gives you an idea of what’s happening:

• You start by showing a spinner.

• You then upload an image.

• When complete, you hide the spinner.

Unfortunately, it’s not exactly that simple because the spinner contains an animation,
and there must be code responsible for that. The showLoadingSpinner function must
then contain code such as this:

fun showLoadingSpinner() {
 showSpinnerView()
 while(running) {
 rotateSpinnerImage()
 delay()
 }
}

The showSpinnerView displays the actual View component, and the following cycle
manages the image rotation. But when does this function actually return?

In the uploadImage code, you assumed that the spinner animation was running even
after the completion of the showLoadingSpinner function, so that the uploading of the
image could start. Looking at the previous code, this is not possible. If the spinner is
animating, it means that the showLoadingSpinner has not completed. If the
showLoadingSpinner has completed, and so the upload has started, it means that the
spinner is not animating anymore. This is happening because when you invoke the
showLoadingSpinner function you’re making a blocking call.

Blocking calls
A blocking call is essentially a function that only returns when it has completed. In the
example above, the showLoadingSpinner function prevents the upload of an image
because it keeps the main thread of execution busy until it returns. But, when it
returns, because the running variable becomes false, the spinner stops rotating.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 14

So how can you solve this problem and animate the spinner even while the upload
function is executing?

Simply put, you need additional threads on which to execute your long-running tasks.

The main thread is also known as UI thread, because it’s responsible for rendering
everything on the screen, and this should be the only thing it does. This means that it
should manage the rotation of the spinner but not the upload of the image — that has
nothing to do with UI. But if the main thread cannot do it because that isn’t its job,
what can execute the upload task? Well, quite simply, you need a new thread on which
to execute your long-running tasks!

Computers nowadays are far more advanced than they were 10 or 15 years ago. Back in
the day computers could only have one thread of execution, making them freeze up
often, if you tried to do multiple things at once. But because of technological
advancements, your applications support a mechanism known as multi-threading. It’s
the art of having multiple threads, where each can process a piece of work, collectively
finishing the needed tasks.

Why multithreading?
There’s always been a hardware limit on how fast computers could be — that’s not really
about to change. Moreover, the number of operations a single processor in a computer
can complete is reaching the law of diminishing returns.

Because of that, technology has steered in the direction of increasing the number of
cores each processor has, and the number of threads each core can have running
concurrently. This way, you could logically divide any number of tasks between
different threads, and the cores could prioritize work by organizing them. And, by doing
so, multithreading has drastically improved how computer systems optimize work and
the speed of execution.

You can apply the same idea to modern applications. For example, rather than spending
large amounts of money on servers with better hardware, you can speed up the entire
system using multithreading and a smart application of concurrency.

Comparing the main and worker threads
The main thread, or the UI thread, is the thread responsible for managing the UI.
Every application can only have one main thread in order to avoid a classical problem
called deadlock that can happen when many threads access the same resources — in

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 15

this case, UI components — in a different order. The other threads, which are not
responsible for rendering the UI, are called worker threads or background threads.
The ability to allow the execution of multiple threads of control is called
multithreading, and the set of techniques in order to control their collaboration and
synchronization, is called concurrency.

Given this, you can rethink how the uploadImage function should work. The
showLoadingSpinner starts a new thread that is responsible for the rotation of the
spinner image, which interacts with the main thread just to notify a refresh in the UI.
Starting a new thread, the function is now a no blocking call and can returns
immediately allowing the image upload to start into its own worker thread. When
completed, this background thread will notify the main thread to hide the spinner.

Once the program launches a background thread, it can either forget about it or expect
some result. You will see how background threads process the result, and communicate
it to the main thread, in the following section.

Interacting with the UI thread from the
background
The upload image example demonstrates how important managing threads is. The
thread responsible to rotate the spinner image needs to communicate with the main
thread in order to refresh the UI at each frame. The worker thread responsible for the
actual upload needs, when it completes, to communicate with the previous in order to
stop the animation and with the main thread for hiding the spinner. All this must
happen without any type of blocks. Knowing how threads communicate is key to
achieving the full potential of concurrency.

Sharing data
In order to communicate, different threads need to share some data. For instance, the
thread responsible for the rotation of the spinner image needs to notify the main thread
that a new image is ready to be displayed. Sharing data is not simple, and it needs some
sort of synchronization that is the main reason for concurrency.

What happens, for instance, if the main thread receives a notification that a new image
is available and, before displaying it, the image is replaced? In this case, the application
would skip a frame and a race condition would happen. You then need some sort of
thread safe data structure. This means that the data structure should work correctly
even if accessed by multiple threads at the same time.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 16

Accessing the same data from multiple threads maintaining the correct behavior and
good performance, is the real challenge of concurrent programming.

There are special cases, however. What if the data is only accessed and never updated?
In this case, multiple threads can read the same data without any race condition, and
your data structure is referred as immutable. Immutable objects are always thread safe.

As a pratical example, take a coffee machine in an office. If two people shared it, and it
wasn’t thread safe, they could easily make bad coffee or spill it around and make a mess.
As one person started making a mocha latte, but another would want a black coffee,
they would ultimately ruin the machine — or worse, the coffee.

What are the data structures that you can use in order to safely share data in a thread?
The most important data structures are queues and, as a special case, pipelines.

Queues
Threads usually communicate using queues, and they can act on them as producers or
consumers. A producer is a thread that puts information into the queue, and the
consumer is the one that reads and uses them. You can think of a queue as a list in
which producers append data at the end, and then consumers read data from the top,
following a logic called FIFO (First In First Out). Threads usually put data into the
queue as objects called messages, which encapsulate the information to share.

A queue is not just a container, but provides synchronization in order to allow a thread
to consume a message only if it is available, otherwise, it waits if the message is not
available. Depending if the queue is a blocking queue, the consumer can block and
wait for a new message — or just retry later.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 17

The same can happen for the producer if the queue is full. Queues are thread safe, so it
is possible to have multiple producers and multiple consumers.

A great real-life example of queues are fast food lines.

Imagine having three lines at a fast food restaraunt. The first line has no customers, so
the person working the line is blocked until someone arrives. The second has
customers, so the line is slowly getting smaller as the worker serves customers.
However, the last line is full of customers, but there’s no one to serve them; this, in
turn, blocks the line until help arrives.

In this example customers form a queue waiting to consume what the fast food workers
are preparing for them. When the food is available, the customer consume it and leaves
the queue.

Pipelines
If you think about pipes, or faucets, and how they work, it’s a fairly simple concept.
When you release the pressure by turning the valve, you’re actually requesting water.
On the other side of that request, there’s a system that regulates the flow of water. As
soon as you make a request, it is blocked until the water comes running — just like a
blocking call.

The same process is used for pipelines or pipes in programming. There’s a pipe that
allows streams of data to flow, and there are listeners. The data is usually a stream of
bytes, which the listeners parse into something more meaningful.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 18

As an example, you can also think about factory lines. Just like in a factory line, if
there’s too much product, the line has to stop until you process everything. That is, if
there’s too much data that you haven’t yet processed, the pipeline is blocked until you
consume some of the data and make room for more to flow. And, alternatively, if there’s
not enough product, the person processing it sits and waits until something comes up.

In other words, if there’s not enough data to flow — the pipe is empty — you’re blocked
until some data emerges. Because you’re either trying to send data to an overflowed
stream, or trying to get data from an empty stream, the mechanism doesn’t know how
to react but to block until the conditions are met.

You can think of pipes as blocking queues wherein you don’t have messages, but chunks
of bytes.

Handling work completion using
callbacks
Out of all the asynchronous programming mechanisms, callbacks are the most often
used. This consists in the creation of objects that encapsulate code that somebody else
can execute later — when a specific task completes, for example. This approach can be
also used in real life when you ask somebody to push a button when they have
completed some task you have assigned to them. When using callbacks, the button is
analogous to code for them to execute; the person executing the task is a no blocking
function.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 19

How can you put some code into an object to pass around? One way is by using
interfaces. You can create the interface in this way:

interface OnUploadCallback {

 fun onUploadCompleted()
}

With this, you are passing an implementations to the function that is executing the
long-running task. At completion, this function will invoke onUploadCompleted on the
object. The function doesn’t know what that implementations does, and it’s not
suppose to know it.

In modern programming languages, like Kotlin, which supports functional
programming features, you can do the same with a lambda expression. In the previous
example, you could pass the lambda to the upload function as a callback. The lambda
would then contain the code to execute when the upload task completes:

fun uploadImage(image: Image) {
 showLoadingSpinner()

 uploadService.upload(image) { hideLoadingSpinner() }
}

Looking back at the first snippet, not much has changed. You still show a loading
spinner, call the upload method and hide the spinner when the upload is done. The core
difference, though, is that you’re not calling hideLoadingSpinner right after the upload.
That function is now part of the lambda block, passed as parameter to the upload,
which will execute it at completion.

Doing so, you can call the wrapped function anytime you’re done with the connected
task. And the lambda block can do pretty much anything, not just hide a loading
spinner.

In case some value is returned, it has passed down the lambda block, so that you can
use it from within. Of course, the inner implementation of the uploadService depends
on the service and the library that you’re using. Generally, each library has its own type
of callbacks. However, even though callbacks are one of the most popular ways to deal
with asynchronicity, they have become notorious over the years. You’ll see how in the
next section.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 20

Indentation hell
Callbacks are simpler than building your own mechanisms for thread communication.
They syntax is also fairly readable, when it comes to simple functions. However, it’s
often the case that you have multiple function calls, which need to be connected or
combined somehow, mapping the results into more complex objects.

In these cases, the code becomes extremely difficult to write, maintain and reason.
Since you can’t return a value from a callback, but have to pass it down the lambda
block itself, you have to nest callbacks. It’s similar to nesting forEach or map
statements on collections, where each operation has its lambda parameter.

When nesting callbacks, or lambdas, you get a large number of braces ’{}’, each forming
a local scope. This, in turn, creates a structure called indentation hell — or callback
hell, when it’s specific to callbacks. A good example, following our example so far,
would be fetching, resizing and uploading images:

fun uploadImage(imagePath: String) {
 showLoadingSpinner()

 loadImage(imagePath) { image ->
 resizeImage(image) { resizedImage ->
 uploadImage(resizedImage) {
 hideLoadingSpinner()
 }
 }
 }
}

You show the upload spinner before the upload itself, as before. But, after you load the
image from a file, you proceed to resize it. Next, when you’ve resized the image
successfully, you start uploading it. Finally, once you manage to upload it, you hide the
loading spinner.

The first thing you notice is the amount of braces and indentation that form a stairs-
like code structure. This makes the code very hard to read, and it’s not even a complex
operation. When building services on the web, nesting can easily reach 10 levels, if not
more. Not only is the code hard to read, but it’s also extremely hard to maintain such
code. Because of the structure, you suffer from cognitive load, making it harder to
reason about the functionality and flow. Trying to add a step in between, or change the
lambda-result types, will break all the subsequent levels.

Additionally, some people find callbacks really hard to grasp at first. Their steep
learning curve, combined with the cognitive load and the lack of extensibility, make
people look elsewhere for a solution to asynchronous programming.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 21

This is where reactive extensions come to life. You’ll see how they solve the nesting
problem in the next section.

Using reactive extensions for
background work
The most significant issue of a callback-based approach is passing the data from one
function to another. This results in nested callbacks, which are tough to read and
maintain. If you think about the queues and pipes, they operate with streams of data,
wherein you can listen to the data as long as you need.

Rx was built upon the idea of having asynchronous operations wrapped up in streams
of events.

Rx incorporates the observer pattern into helpful constructs. Furthermore, there are a
large number of operators, extending the behavior of observable streams, allowing
for clean and expressive data processing. You can subscribe to a stream of events,
map, filter, reduce and combine the events in numerous ways, as well as handle errors
in the entire chain of operations, using a single lambda function.

The previous example of loading, uploading and resizing an image, using Rx, can be
represented:

fun uploadImage(imagePath: String) {
 loadImage(imagePath)
 .doOnSubscribe(::showLoadingSpinner)
 .flatMap(::resizeImage)
 .flatMap(::uploadImage)
 .subscribe(::hideLoadingSpinner, ::handleError)
}

At first, the code might look weird. In reality, it’s a stream of data modified by using a
bunch of operators. It begins with the flatMap operator, which takes some data — the
image from loadImage function — and passes it to another function, creating a new
stream. Then, the new stream sends events in the form of resizedImage value, which
gets passed to the uploadImage, again using flatMap, and operator chaining.

Finally, the uploadImage stream doesn’t pass data but, rather, completion events,
which tell you to hide the loading spinner, since the upload has finished.

These streams of data and operations don’t actually get executed until someone
subscribes to them, using the subscribe(onComplete, onError) function.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 22

Additionally, the doOnSubscribe function takes an action that the stream executes
whenever you subscribe to it. There are also functions like doOnSuccess and doOnError,
which propagate their respective events.

Further, it’s important to know that, if any error or exception occurs in any of the
operations in a chain, it’s not thrown, and the application doesn’t crash. Instead, the
stream passes it down the chain, finally reaching the onError lambda. Callbacks do not
have this behavior; they just throw the exception and you have to handle it yourself,
using try/catch blocks.

Reactive extensions are cleaner than callbacks when it comes to asynchronous
programming, but they also have a steeper learning curve. With dozens of operators,
different types of streams and a lot of edge cases about switching between threads, it
takes a larger amount of time to fully understand them.

The learning curve, and a few other issues, will be discussed in the next section.

Diving deeper into the complexity of Rx
Since this book isn’t about Rx, you’ll only have a narrow overview of its positive and
negative features. As seen before, Rx makes asynchronous programming clean and
readable. Further, compared with the operators that allow for data processing, Rx is a
powerful mechanism. Moreover, the error handling concept of streams adds extra safety
to applications.

But Rx is not perfect. It has its problems like any other framework, or paradigm, some of
which are really coming up in the programming community lately.

To start, there is the learning curve. When you start learning Rx, you have to learn a
number of additional concepts, such as the observer pattern and streams. You will
also find that Rx is not just a framework; it brings a completely new paradigm called
reactive programming. Because of this, it’s very hard to start working with Rx. But it’s
even harder to grasp the finesse of its operators. The amount of operators, types of
thread scheduling, and the combinations between the two, creates so many options
that it’s nearly impossible to know the full extent of Rx.

Another problematic issue with using Rx is the hype. Over the years, people have moved
towards Rx as a silver bullet for asynchronous operations.

This eventually led to such programming being Rx-driven, introducing even more
complexity to existing applications. Finding workarounds and using numerous design
patterns, just to make Rx work, introduced new layers of unwanted complexity. Because

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 23

of this, in Android, the Rx community has been debating if programmers should
represent things like network requests as streams of data versus just a single event that
they could handle using callbacks or something even simpler. The same debate
transitions to navigation events, as an example. Should programmers represent clicks
as streams of events, too? The community opinion is very divided on this topic.

So, with all this in mind, is there a better or simpler way to deal with asynchronicity?
Oddly enough, there’s a concept dating back decades, which has recently become a hot
topic.

A blast from the past
This is a book about coroutines. They’re a mechanism dating to the 1960’s, depicting a
unique way of handling asynchronous programming. The concept revolves around the
use of suspension points, functions and continuations as first-class citizens in a
language.

They’re a bit abstract, so it’s better to show an example:

fun fetchUser(userId: String) {
 val user = userService.getUser(userId) // 1

 print("Fetching user") // 2
 print(user.name) // 3
 print("Fetched user") // 4
}

Using the above code snippet, and revisiting what you learned about blocking calls,
you’d say that the execution order was 1, 2, 3 and 4. If you carefully look at the code,
you realize that this is not the only possible logical sequence. For instance, the order
between 1 and 2 is not important, nor is the order between 3 and 4. What is important is
that the user data are fetched before they are displayed; 1 must happen before 3. You
can also delay the fetching of the user data to a convenient time before the user data is
actually displayed. Managing these issues in a transparent way is the black magic called
coroutines!

They’re a part-thread, part-callback mechanism, which use the system’s power of
scheduling and suspending work. This way, you can immediately return a result from
the call without using callbacks, threads or streams. Think of it this way, once you start a
coroutine, or call a suspension functions, it gets nicely wrapped up and prepared like a
taco. But, until you want to eat the taco, the code inside might not get executed.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 24

Explaining coroutines: The inner
workings
It’s not really magic — only a smart way of using low-level processing. The getUser
function is marked as a suspension function, meaning the system prepares the call in
the background, and you get an unfinished, wrapped taco. But it might not execute the
function yet. The system moves it to a thread pool, where it waits further command.
Once you’re ready to eat the taco and you call the result, the program blocks until you
get a ready-to-go snack.

Knowing this, the program can skip over to the rest of the function code, until it
reaches the first line of code on which it uses the user. This is called awaiting the
result. At that point, it executes the getUser function, if it hasn’t already, blocking the
program.

This means you can do as much processing as you want, in between the call itself and
using its result. Because the compiler knows suspension points and functions are
asynchronous, but treats their execution sequentially, you can write understandable
and clean code, which is very extensible and easy to maintain.

Since writing asynchronous code is so simple with coroutines, you can easily combine
multiple requests or transform the data. No more staircases, strange stream mapping to
pass the data around, or complex operators to combine or transform the result. All you
need to do is mark functions as suspendable, and call them in a coroutine block.

Another, extremely important thing to note about coroutines is that they’re not
threads. They are a low-level mechanism that utilizes thread pools to shuffle work
between multiple, existing threads. This allows you to create millions of coroutines,
without overflowing the memory; a million threads would take so much memory, even
today’s state-of-the-art computers would crash.

Although many languages support coroutines, each has a different implementation.

Variations through history
As mentioned, coroutines are a dated but powerful concept. Throughout the years,
several programming languages have evolved their version of the implementation. For
example, in languages like Python and Smalltalk, coroutines are first-class citizens, and
can be used without an external library.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 25

A generator in Python would look like this:

def coroutine():
 while True:
 value = yield
 print(’Received a value:’, value)

This code defines a function, which loops forever, listening and printing any arguments
you send to it. The concept of an infinite loop, which listens for data is called a
generator. The keyword yield is what triggers the generator, receiving the value. As you
can see, there’s a while True statement in the function. In regular code, this would
create an standard infinite loop, effectively blocking the program, since there’s no exit
condition. But this is a coroutine-powered call, so it waits in the background until you
send some value to the function, which is why it doesn’t block.

Another language with first-class coroutines is C#. In C#, there’s a support for the yield
statement, like in Python, but also for async and await calls, like this:

MyResult result = await AsyncMethodThatReturnsAResult();

await AsyncMethodThatReturnsAResult()

Here, by adding the await keyword, you can return an asynchronous result, using
normal, sequential code. It’s pretty much what you saw in the example above, where
you first learned about coroutines.

Both Python and C# have first-class support for coroutines. Many other programming
languages utilize external libraries in order to support programming with coroutines.
Kotlin also has coroutines support in its standard library. By including them in the
language itself, it allows you to make asynchronous calls without including a third-
party framework. Additionally, the way Kotlin coroutines are built — global functions
with receivers, makes them very extensible, you can create your own API by building
on top of the existing functions.

You’ll see how to do this in the next chapters of the book.

Key points
• Multithreading allows you to run multiple tasks in parallel.

• Asynchronous programming is a common pattern for thread communication.

• There are different mechanisms for sharing data between threads, some of which
are queues and pipelines.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 26

• Most mechanisms rely on push-pull tactic, blocking threads when there is too much,
or not enough data, to process

• Callbacks are a complex, hard-to-maintain and cognitive-load-heavy mechanism.

• It’s easy to reach callback hell when doing complex operations using callbacks.

• Reactive extensions provide clean solutions for data transformation, combination
and error handling.

• Rx can be too complex, and doesn’t fit all applications.

• Coroutines are an established, and reliable concept, based on low-level scheduling.

• Too many threads can take up a lot of memory, ultimately crashing your program or
computer.

• Coroutines don’t always create new threads, they can reuse existing ones from
thread pools.

• It’s possible to have asynchronous code, written in a clean, sequential style, using
coroutines.

Where to go from here?
Well that was a really brief overview of the history and theory beind asynchronous
programming and coroutines.

If you’re excited about some code and Kotlin’s coroutines, in the next section of the
book you’ll learn about suspending functions and suspension points. Moreover,
you’ll see how coroutines are created in Kotlin, using coroutine builders. Next, you’ll
build asynchronous calls, which return some data with the async function, and see how
you await the result. And, finally, you’ll learn about jobs and their children, in
coroutines.

You’ll cover the entire base API for Kotlin Coroutines, learning how to wrap
asynchronous calls into async blocks, how to combine multiple operations and how to
build Jobs which have multiple layers of coroutines.

But before that, you have to set up your build environment, so let’s get going!

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 27

15Chapter 15: Coroutines on
Android: Part 1
By Nishant Srivastava

The importance of concurrency is discovered quite early on by people who start with
Android development. Android is inherently asynchronous and event-driven, with strict
requirements as to on which thread certain things can happen. Add to this the often-
cumbersome Java callback interfaces, and you will be trapped in spaghetti code pretty
quickly (aptly termed as “Callback Hell”). No matter how many coding patterns you use
to avoid that, you will have to encounter the state change across multiple threads in
one way or the other.

The only way to create a responsive app is by leaving the UI thread as free as possible,
letting all the hard work be done asynchronously by background threads.

Note: You’ve already met the term “Callback Hell” in the first chapter. It’s the
situation in which you have to serially execute and process the results of
asynchronous services by nesting callback, often several layers deep.

The purpose of coroutines is to take care of the complications in working with
asynchronous programming. You write code sequentially, like you usually would, and
then leave the hard asynchronous work up to coroutines.

Using coroutines in Android provides some of the following benefits:

• Coroutines are a language feature provided out of the box by Kotlin and, thus, they
can be updated independently from the Android platform releases.

• Coroutines make asynchronous code look synchronous, making the code more
readable. Also, since a synchronous sequence of steps is much easier to manage — as
opposed to asynchronous code — coroutines enable greater confidence in changing
the flow when needed.

raywenderlich.com 28

• Thanks to coroutines, getting rid of any callbacks and the need to pass around state
information is fairly easy, i.e., storing temporary state in Presenter/ViewModel is
simplified and state is not passed across multiple methods any longer.

• Coroutines enable better, concise and testable code.

In this chapter, you’ll learn about what different mechanisms already exist for
asynchronous programming on the Android platform and why coroutines are a much
better replacement for all of them. You’ll see what Kotlin coroutines bring to the table
and how they simplify various facets of Android development.

Getting started
For this chapter, you will use a basic app called Async Wars in order to learn about
various async primitives in Android and coroutines at a high level. If you have already
downloaded the starter project, then import it into Android Studio.

The project consists of some pre-written utility classes under the package utils. Let’s
go over them one by one:

1. DownloaderUtil: A singleton which has a method called downloadImage() that
fetches an image from a pre-setup URL returning a Bitmap. This is done on the main
thread and it will be your goal to execute this method on a background thread, and
then you will display the image on the screen.

2. ImageDownloadListener: Interface which is used as a listener for images being
downloaded.

3. BroadcasterUtil: A singleton which is used to abstract away the calls made using
LocalBroadcastManager.

4. MyBroadcastReceiver: Implementation of BroadcastReceiver class used as an
adapter between the sender and an ImageDownloadListener.

5. Extensions.kt: Utility Kotlin extension methods.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 29

Async Wars

Under the package async, you will find GetImageAsyncTask and MyIntentService classes,
which will be used and discussed at a later stage in this chapter.

Apart from that, there is MainActivity class wherein everything is wired up for making
calls to download images using various async constructs in Android, and to display
them in the UI. Almost all the code is pre-written to make it easier for you to switch
between these async constructs and see the results. There are two important sections
inside MainActivity class that you should take note of:

1. MethodToDownloadImage: This is an enum class defined inside the MainActivity
class, which enumerates all the various types of async construct types in Android.

2. Inside the onCreate() is a code region marked to be modified:

//region
val doProcessingOnUiThread = true
val methodToUse = MethodToDownloadImage.Thread
//endregion

This is where you will mostly make the changes to trigger the right kind of async
construct for downloading an image and displaying it in the UI. Here, when working
with async constructs, you will have to set doProcessingOnUiThread = false. After that,
the value of methodToUse, which will be one of the items from the

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 30

MethodToDownloadImage enum class, will be used later to trigger the specific async
method. When not dealing with async constructs, simply set back to
doProcessingOnUiThread = true.

Run the app. You will see a UI like below with a button and an animating spinner. The
spinner is there to show the impact of calls on the UI thread while a widget is
animating. The button will trigger a calculation of a Fibonacci sequence number on the
main thread when the flag doProcessingOnUiThread is set to true.

Starter Project

Does Android really need coroutines?
When you start an Android application, the first thread spawned by its process is the
main thread, also known as the UI thread. This is the most important thread of an
application. It is responsible for handling all the user interface logic, user interaction
and also tying the application’s moving parts together.

Android takes this very seriously; if your UI thread is stuck working on a task for more
than a few seconds, the Android framework will throw an Application Not
Responding (ANR) error and the app will crash. Most importantly, even small work on
the UI/Main thread can lead to your UI freezing, i.e., animations will stop, and the UI
will become non-responsive to the user interaction; everything will stop until the work
is finished.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 31

To demonstrate this behavior, inside the MainActivity.kt of the starter app, make sure
that the value of the flag doProcessingOnUiThread is set to true. If it is, then simply run
the app.

You will see the below app state:

UI blocking processing

Now, click the Start button in the UI. This will trigger a call to
runUiBlockingProcessing() method. Here is the method definition:

fun runUiBlockingProcessing() {
 // Processing
 showToast("Result: ${fibonacci(40)}")
}

Here, fibonacci(number) method is a helper method and has the below naive
implementation:

// ----------- Helper Methods -----------//
fun fibonacci(number: Int): Long {
 return if (number == 1 || number == 2) {
 1
 } else fibonacci(number - 1) + fibonacci(number - 2)
}

Here, the runUiBlockingProcessing() method starts a calculation of the 40th Fibonacci
sequence number. Since the processing is done on the UI thread, you will see that the
animating spinner stops until the calculation has completed.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 32

You will see a toast message with the result value when the calculation completes, after
which the spinner start animating again.

UI blocking processing

Now, here is the problem: almost all code in an Android application will be executed on
the UI thread by default. Since the tasks on a thread are executed sequentially, this
means that your user interface could become unresponsive while it is processing some
other work.

Long-running tasks called on the UI thread could be fatal to your application, leading to
an ANR dialog, which gives the user the opportunity to force-quit the application. Even
small tasks can compromise the user experience; hence, the correct approach is to move
as much work off of the UI thread onto a background thread.

Android comes with some pre-built solutions to handle such situations, but, due to its
design, it has proven to be really difficult for many. Using the low-level threading
packages with Android means that you have to worry about a lot of tricky
synchronization to avoid race conditions or, worse, deadlocks. The good news is that
the folks working on the Android framework noticed this and provided better API to
deal with such situations. AsyncTask, IntentService, ExecutorService, etc. are some
of the very useful classes, as well as the HaMeR classes Handler, Message and
Runnable. Each comes with its own pros and cons.

Let’s take a quick look at each one of them.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 33

Note: Before you continue with the chapter, from here onwards, inside the
MainActivity.kt of the starter app, ensure that the value of the flag
doProcessingOnUiThread is set to false. You will not be needed to set it to true
anymore.

Threads
A thread is an independent path of execution within a program. Every thread in Java is
created and controlled by a java.lang.Thread instance. A Java program can have many
threads, and these threads can run concurrently, either asynchronously or
synchronously.

Every Android developer, at one point or another, needs to deal with threads in their
application. The main thread is responsible for dispatching events to the appropriate
user-interface widget, as well as communicating with components from the Android UI
toolkit. To keep your application responsive, it is essential to avoid using the main
thread to perform operations that may last for long.

Network operations and database calls, as well as the loading of certain components,
are common examples of operations that should not run in the main thread. When they
are called in the main thread, they are called synchronously, which means that the UI
will remain completely unresponsive until the operation completes. For this reason,
they are usually performed in separate threads, which thereby avoids blocking the UI
while they are being performed (i.e., they run asynchronously from the UI).

Sample usage:

You can create a thread in two ways:

1. Extending the Thread class:

// Creation
class MyThread : Thread() {

 override fun run() {
 doSomeWork()
 }
}

// Usage
val thread = MyThread()
thread.start()

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 34

2. Passing a Runnable interface implementation as Thread constructor parameter:

// Creation
class MyRunnable : Runnable {

 override fun run() {
 doSomeWork()
 }
}

// Usage
val runnable = MyRunnable()
val thread = Thread(runnable)
thread.start()

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Thread. This makes sure that, when the
button is clicked, the method getImageUsingThread() is called. Here is the method
definition:

fun getImageUsingThread() {
 // Download image
 val thread = Thread(myRunnable)
 thread.start()
}

Where myRunnable has the below implementation:

inner class MyRunnable : Runnable {
 override fun run() {
 // Download Image
 val bmp = DownloaderUtil.downloadImage()

 // Update UI on the UI/Main Thread with downloaded bitmap
 runOnUiThread {
 imageView?.setImageBitmap(bmp)
 }
 }
}

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 35

Run the app.

Download image using Thread

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using Thread

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 36

It’s important to note how the downloaded image has been passed to the UI thread
using the runOnUiThread() function that you inherit from the Activity class.

Note: The animation will stop now just for a very short time. Passing an image
from one thread to another never comes for free.

inner class MyRunnable : Runnable {
 override fun run() {
 // Download Image
 val bmp = DownloaderUtil.downloadImage()

 // Update UI on the UI/Main Thread with downloaded bitmap
 runOnUiThread {
 imageView?.setImageBitmap(bmp)
 }
 }
}

Interacting with UI components from a background thread would have caused an error
like this:

E/AndroidRuntime: FATAL EXCEPTION: Thread-4
 Process: com.raywenderlich.android.asyncwars, PID: 3127
 android.view.ViewRootImpl$CalledFromWrongThreadException:
 Only the original thread that created a view hierarchy can touch
its views.

The operative system’s scheduler is responsible for the management of the lifecycle of
each thread. It can execute, suspend and resume threads depending on its state and
some synchronization requirement. This is an expensive job and, if you try to launch a
high number of threads — a million, for example — your processor will spend more time
changing from one thread to another than executing the code you want it to execute.
This is called context switch. Every Thread you instantiate in Java (or Kotlin)
corresponds to a thread of the operating system (either physical or virtual), and,
therefore, it is the scheduler of the operating system that is in charge of prioritizing
which thread should be executed in every moment.

In a nutshell, threads might be:

• Expensive: Context switching and having upper limits in the number of threads that
can be spawned.

• Difficult: Creating a multithreaded program is quite complex requiring a lot of
ceremonies around how the code is referenced and executed across the threads.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 37

Taking that into account, engineers working on the Android framework came up with a
solution to handle this scenario of doing work on the background thread to then
publish it to the UI thread; it is called AsyncTask.

AsyncTask
In Java, you usually put the code you want to run asynchronously into the run method
of a class, which implements the Runnable interface. This works well if all you need to
do is offload work off to another thread. However, it becomes cumbersome when you
need to relay the results of that thread back to the UI thread.

When Google adopted Java for Android, it released a new type of class called AsyncTask
that made it easier to offload long-running tasks to a background thread, then update
the UI thread with the result if there was one. Using AsyncTask instances certainly was
easier than Runnable, but it came with its own set of issues.

AsyncTask is the most basic Android component for threading. It’s simple to use and
can be good for basic scenarios. The only important thing you should know here is that
only one method of this class is running on another thread: doInBackground. The other
methods are running on UI thread.

AsyncTask Process Flow

Here is a sample usage:

class ExampleActivity : Activity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 MyTask().execute(url)
 }

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 38

 private inner class MyTask : AsyncTask<String, Void, String>() {

 override fun doInBackground(vararg params: String): String {
 val url = params[0]
 return doSomeWork(url)
 }

 override fun onPostExecute(result: String) {
 super.onPostExecute(result)
 // do something with result
 }
 }
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.AsyncTask. This makes sure that, when the
button is clicked, the method getImageUsingAsyncTask() is called. Here is the method
definition:

fun getImageUsingAsyncTask() {
 // Download image
 val myAsyncTask = GetImageAsyncTask(imageDownloadListener)
 myAsyncTask.execute()
}

Here, GetImageAsyncTask has the below implementation:

class GetImageAsyncTask(val imageDownloadListener: ImageDownloadListener)
:
 AsyncTask<String, Void, Bitmap>() {

 // This executes on the background thread
 override fun doInBackground(vararg p0: String?): Bitmap? {
 // Download Image
 return DownloaderUtil.downloadImage()
 }

 // This executes on the UI thread
 override fun onPostExecute(bmp: Bitmap?) {
 super.onPostExecute(bmp)
 if (isCancelled) {
 return
 }

 // Pass it to the listener
 imageDownloadListener.onSuccess(bmp)

 // Cancel this async task after everything is done.
 cancel(false)
 }
}

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 39

ImageDownloadListener is used to setup a listener, which will return the bitmap once it
is downloaded. In the MainActivity.kt, an instance of this is created and used inside
the getImageUsingAsyncTask() method while creating the GetImageAsyncTask, which, in
turn, is used to update the UI:

private val imageDownloadListener = object : ImageDownloadListener {
 override fun onSuccess(bitmap: Bitmap?) {
 // Update UI with downloaded bitmap
 imageView?.setImageBitmap(bitmap)
 }
}

Run the app.

Download image using AsyncTask

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 40

The image downloads:

Download image using AsyncTask

The AsyncTask defines some callback methods in order to simplify the way cancellation
and the progression of the task are communicated to the UI; however, it does not play
out well when it comes to doing complex operations based on an Android component’s
lifecycle. It is actually unaware of Activity lifecycle; in other words, if the activity is
destroyed, the AsyncTask doesn’t know about it in the onPostExecute() method unless
you tell it.

It is worth noting that even something as simple as screen rotation can cause the
activity to be destroyed. Also, canceling an AsyncTask just puts it in a canceled state —
it’s up to you to check whether it’s been canceled and halt operations.

Handlers
Handler is part of the HaMeR Framework (Handler, Message & Runnable), which is the
recommended framework for communication between threads in Android. This is the
one used, under the hood, by the AsyncTask class.

As you have seen in the previous chapters, threads can share data using queues, which
usually have a producer and a consumer. The producer is the object that puts data into
the queue, and the consumer is the object that reads those data from the queue when
available.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 41

If the producer runs into thread A and the consumer into thread B, you understand that
you can use the queue as a communication channel between different threads. This is
basically the idea behind the HaMeR framework. The queue is actually a MessageQueue,
and the data you pass are encapsulated into a Message object. Each Message can contain
some data or the reference to a Runnable implementation that defines the code to
execute into the thread of the consumer.

If you had to implement the consumer of the queue on your own, you would probably
implement it with a cycle that waits for a Message and, when available, reads and uses
the information into it or else run the code into the Runnable object if available. That
cycle would be into the run implementation of the related Thread class. Android defines
this cycle into a class called Looper. It’s important to note that you decide the
destination thread putting the message into the related queue. This also implies that
there is only one Looper per Thread.

What’s the role of the Handler in all of this? Each Handler instance is associated with a
specific Thread through its Looper. You can bind a Looper to a Handler, passing it as the
constructor parameter or by simply creating the Handler instance into the Looper’s
thread. You can then use a Handler in two different ways:

1. You can use it in order to put a Message into the queue that its Looper will read into
the associated Thread.

2. You can also use Handler as the object containing the actual consumer logic. In this
case, you usually override the handleMessage(Message?) method like this:

 object handler: Handler(){
 override fun handleMessage(msg: Message?) {
 // Consume the message
 }
 }

This is possible because, when a thread reads a message from its queue, it delegates the
actual usage of the data to its handlers.

How can you use all this in order to send data from a background thread to the UI? You
just need a Handler associated with the main looper that is available calling
Looper.getMainLooper() and then post an action as a Runnable:

val runnable = Runnable {
 // update the ui from here
}

val handler = Handler(Looper.getMainLooper())
handler.post(runnable)

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 42

You can summarize the different objects responsibilities as:

• Looper: Runs a loop on its Thread, waiting for Message instances on its
MessageQueue.

• MessageQueue: Holds a list of messages for a given Thread.

• Handler: Allows the sending and processing of Message and Runnable to the
MessageQueue. It can be used to send and process messages between threads.

• Message: Contains a description and data that can be created and sent using a
Handler.

• Runnable: Represents a task to be executed.

Handler is then the HaMeR workhorse. It’s responsible for sending Message (data
message) and post Runnable (task message) objects to the MessageQueue associated with
a Thread.

After delivering the tasks to the queue, the handler receives the objects from the looper
and processes the messages at the appropriate time. It can be used to send or post some
message or runnable objects between threads, as long as such threads share the same
process. Otherwise, it will be necessary to use an Inter Process Communication (IPC)
mechanism, like the Messenger class or some Android Interface Definition Language
(AIDL) implementation.

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Handler. This makes sure that, when you
click the button, the method getImageUsingHandler() is called. Here is the method
definition:

fun getImageUsingHandler() {
 // Create a Handler using the main Looper
 val uiHandler = Handler(Looper.getMainLooper())

 // Create a new thread
 Thread {
 // Download image
 val bmp = DownloaderUtil.downloadImage()

 // Using the uiHandler update the UI
 uiHandler.post {
 imageView?.setImageBitmap(bmp)
 }
 }.start()
 }

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 43

Run the app.

Download image using Handler

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using Handler

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 44

HandlerThreads
The UI thread already comes with a Looper and a MessageQueue. For other threads, you
need to create the same objects if you want to leverage the HaMeR framework. You can
do this by extending the Thread class as follow:

// Preparing a Thread for HaMeR
class MyLooperThread : Thread() {

 lateinit var handler: Handler

 override fun run() {
 // adding and preparing the Looper
 Looper.prepare()

 // the Handler instance will be associated with Thread’s Looper
 handler = object : Handler() {
 override fun handleMessage(msg: Message) {
 // process incoming messages here

 }
 }

 // Starting the message queue loop using the Looper
 Looper.loop()
 }
}

However, it’s more straightforward to use a helper class called HandlerThread, which
creates a Looper and a MessageQueue for you. Check out the implementation of
getImageUsingHandlerThread() method inside MainActivity.kt of the starter app:

var handlerThread: HandlerThread? = null
fun getImageUsingHandlerThread() {
 // Download image
 // Create a HandlerThread
 handlerThread = HandlerThread("MyHandlerThread")

 handlerThread?.let{
 // Start the HandlerThread
 it.start()
 // Get the Looper
 val looper = it.looper
 // Create a Handler using the obtained Looper
 val handler = Handler(looper)
 // Execute the Handler
 handler.post {
 // Download Image
 val bmp = DownloaderUtil.downloadImage()

 // Send local broadcast with the bitmap as payload
 BroadcasterUtil.sendBitmap(applicationContext, bmp)
 }
 }

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 45

}

override fun onDestroy() {
 super.onDestroy()

 // Quit and cleanup any instance of dangling HandlerThread
 handlerThread?.quit()
}

Here, you create an instance of the HandlerThread, passing a name that is very useful
for debugging purposes. The HandlerThread extends the Thread class and you have to
start it in order to use its Looper. You then access looper property and pass it as the
constructor paramenter of the Handler. You can then use the handler that you have
created for sending Runnable objects to the HandlerThread. All of the code you
encapsulate into the Runnable object will be then executed into the HandlerThread.

Note: It is important that you call quit() on the HandlerThread instance when the
work is done, possibly in the onDestroy() of the activity so as to release resources
it would be holding.

HandlerThread

Note: When the Activity is destroyed, it’s important to terminate the
HandlerThread. This also terminates the Looper.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 46

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.HandlerThread. This makes sure that, when
you click the button, the method getImageUsingHandlerThread() is called.

Run the app.

Download image using HandlerThread

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using HandlerThread

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 47

Service
The definition of component implies the existence of a container. You usually
describe all your components to the container using some document; the container will
create, suspend, resume and destroy components depending on the state of the
application or on the available resources on the device. You would say that the
container is responsible for the component’s lifecycle. You can apply the same concept
to Android when you describe all your components to the system using the
AndroidManifest.xml file.

In the example you’ve seen earlier, the component is an Activity whose lifecycle
depends mainly on the application usage and on the available resources. For instance,
when the user rotates the device, the activity is destroyed and then re-created — unless
you don’t configure differently. What happens when you start a task in the background
from an Activity and then rotate the device? In the case of the HandlerThread, you
should make it aware of the lifecycle and cancel the tasks, if any, and execute them
again. This is not always the best solution — especially in cases of very long tasks like
downloading a file.

For situations like these, Android provides a different component whose lifecycle
doesn’t depend on what’s happening on the UI but that can only depend on the
available resources: the service. It’s an Android component and, as such, you have to
declare it into the AndroidManifest.xml file, but it has lifecycle different from the
activities lifecycle.

The Service is a component that you can use as the owner of a very long task because
the system will change its state only if it really needs resources. You can think of it as a
safe place to put your long-running code. It’s important to note that a service does not
create its own thread and does not run in a separate process unless you explicitly say
so.

A sample usage:

class ExampleService : Service() {

 fun onStartCommand(intent: Intent, flags: Int, startId: Int): Int {
 doSomeLongProccesingWork()
 return START_NOT_STICKY
 }

 fun onBind(intent: Intent): IBinder? {
 return null
 }

 fun doSomeLongProccesingWork(){
 // Do some work

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 48

 // Stop service when required
 stopSelf()
 }
}

It is your responsibility to stop a Service when its work is complete by calling either the
stopSelf() or the stopService() method. The Service doesn’t know what is going on
in the code running in your thread or executor task — it is your responsibility to let it
know when you’ve started and when you’ve finished.

A basic service can exist in two flavors:

• A started service is initiated by a component in your application and remains active
in the background of the device, even if the original component is destroyed. When a
started service finishes running its task, the service will stop itself. A standard started
service is generally used for long-running background tasks that do not need to
communicate with the rest of the app.

• A bound service provides a client/server communication paradigm. The service is
usually thought of as the server and an Android context, usually an activity, is the
client. This type of service is similar to a started service, and it also provides
callbacks for various app components that can bind to it. When all bound
components have unbound themselves from the service, the service will stop itself.

It is important to note that these two ways to run a service are not mutually exclusive
so you can start a service that will run indefinitely and can have components bound to
it.

However, since the Api Level 26 (Android 8.0), the Service usage as you might know it
today, has been deprecated. It is no longer allowed to fulfill its primary purpose, namely
to execute the long-running task in the background. Calling startService() method
when your app has been put in background throws an IllegalStateException. The only
way one can use services now is as a foreground service.

Intent service
As stated previously, Service components, by default, are started in the main thread
like any other Android component. If you need the service to run a task as a background
task, then it’s up to you to create a separate thread and move your work to that thread.
The Android frameworks also offer sub-class of Service that can do all the threading
work for you: IntentService.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 49

It runs on a separate thread and stops itself automatically after it completes its work.
IntentService is usually used for short tasks that don’t need to be attached to any UI.
Since IntentService doesn’t attach to any activity and it runs on a non-UI thread, it
serves the need perfectly. Moreover, IntentService stops itself automatically, so there
is no need to manually manage it, either.

One of the biggest issues with a standard started service is that it cannot handle
multiple requests at a time, but that is not the case with an IntentService. It creates a
default worker thread for executing all intents that are received in onStartCommand(), so
all operations can happen off the main thread. It then creates a work queue for sending
each intent to onHandleIntent() one at a time so that you don’t need to worry about
multi-threading issues.

Essentially, there is always only one instance of your IntentService implementation at
any given time and it has only one HandlerThread. This means that if you need more
than one thing to happen at the same time, IntentServices may not be a good option.

Sample usage:

// Required constructor with a name for the service
class MyIntentService : IntentService("MyIntentService") {

 override fun onHandleIntent(intent: Intent?) {
 //Perform your tasks here
 doSomeWork();
 }
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.IntentService. This makes sure that when
the button is clicked, the method getImageUsingIntentService() is called. Here is the
method definition:

fun getImageUsingIntentService() {
 // Download image
 val intent = Intent(this@MainActivity, MyIntentService::class.java)
 startService(intent)
}

Here, MyIntentService has the below implementation:

// Required constructor with a name for the service
class MyIntentService : IntentService("MyIntentService") {

 override fun onHandleIntent(intent: Intent?) {
 // Download Image
 val bmp = DownloaderUtil.downloadImage()

 // Send local broadcast with the bitmap as payload

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 50

 BroadcasterUtil.sendBitmap(applicationContext, bmp)
 }
}

Here, BroadcasterUtil is a utility class that internally uses LocalBroadcastManager. It
is used here to easily send the image back to the UI thread. You will learn more about
this process in the next section. Run the app.

Download image using IntentService

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using IntentService

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 51

Sending data from a Service to the UI
You learned that a started Service is an Android component that is not bound to the UI.
If you need to send some data from a service to a different component, like an Activity,
you need some other mechanisms like the LocalBroadcastManager that you used via the
BroadcasterUtil in the previous example. You can see how to send data from a service
in the onHandleIntent() method of the MyIntentService class:

override fun onHandleIntent(intent: Intent?) {
 // Download Image
 val bmp = DownloaderUtil.downloadImage()

 // Send local broadcast with the bitmap as payload
 BroadcasterUtil.sendBitmap(applicationContext, bmp)
}

Here, sendBitmap(applicationContext, bmp) is a method defined inside
BroadcasterUtil class with the below implementation:

/**
 * Send local broadcast with the bitmap as payload
 * @param context Context
 * @param bmp Bitmap
 * @return Unit
 */
fun sendBitmap(context: Context, bmp: Bitmap?) {
 val newIntent = Intent()
 bmp?.let {
 newIntent.putExtra("bitmap", it)
 newIntent.action = MainActivity.FILTER_ACTION_KEY

LocalBroadcastManager.getInstance(context).sendBroadcast(newIntent)
 }
}

As you can see, it uses LocalBroadcastManager to send a broadcast using an intent,
which has a payload of the passed bitmap. A LocalBroadcastManager needs a
BroadcastReceiver to be registered via using the registerReceiver() method. In the
starter app, there is an implementation for a BroadcastReceiver already provided
named MyBroadcastReceiver, which has the below implementation:

class MyBroadcastReceiver(val imagdeDownloadListener:
ImageDownloadListener) : BroadcastReceiver() {
 override fun onReceive(context: Context, intent: Intent) {
 val bmp = intent.getParcelableExtra<Bitmap>("bitmap")

 // Pass it to the listener
 imagdeDownloadListener.onSuccess(bmp)
 }
}

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 52

ImageDownloadListener is used here to set up a listener, which will return the bitmap
once it is downloaded. In the MainActivity.kt, you’ve already created an instance of
this during the AsyncTask section of this chapter.

BroadcasterUtil abstracts register and unregister of MyBroadcastReceiver for the
LocalBroadcastManager by defining helper methods:

/**
 * Register Local Broadcast Manager with the receiver
 * @param context Context
 * @param myBroadcastReceiver MyBroadcastReceiver
 * @return Unit
 */
fun registerReceiver(context: Context, myBroadcastReceiver:
MyBroadcastReceiver?) {
 myBroadcastReceiver?.let {
 val intentFilter = IntentFilter()
 intentFilter.addAction(MainActivity.FILTER_ACTION_KEY)
 LocalBroadcastManager.getInstance(context).registerReceiver(it,
intentFilter)
 }
}

/**
 * Unregister Local Broadcast Manager from the receiver
 * @param context Context
 * @param myBroadcastReceiver MyBroadcastReceiver
 * @return Unit
 */
fun unregisterReceiver(context: Context, myBroadcastReceiver:
MyBroadcastReceiver?) {
 myBroadcastReceiver?.let {
 LocalBroadcastManager.getInstance(context).unregisterReceiver(it)
 }
}

You use these helper methods later to register and unregister an instance of
MyBroadcastReceiver to the LocalBroadcastManager in onStart() and onStop()
respectively, of the MainActivity:

// ----------- Lifecycle Methods -----------//
override fun onStart() {
 super.onStart()
 BroadcasterUtil.registerReceiver(this, myReceiver)
}

override fun onStop() {
 super.onStop()
 BroadcasterUtil.unregisterReceiver(this, myReceiver)
}

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 53

Important points to note, here:

• If there’s no BroadcastReceiver registered, there won’t be any update in the UI.

• The thread that will perform the ImageView update is the UI thread.

• IntentService uses HandlerThread internally.

Executors
You’ve seen that you can encapsulate code into a Runnable implementation in order to
eventually run it in some given Thread. Every object that can execute what’s defined
into a Runnable can be abstracted using the Executor interface, introduced in Java 5.0 as
part of the concurrent APIs.

interface Executor {
 fun execute(command: Runnable)
}

You can execute a Runnable in many different ways. You can, for instance, simply invoke
directly the run() method or pass the Runnable object as constructor parameter of the
Thread class and start it, as seen previously. In the former case, you’re executing the
runnable code in the caller thread. In the latter, you’re executing the same code into a
different thread. This depends on the particular Executor implementation.

Creating a thread is very simple in the code but expensive in practice. Every time you
create a Thread instance you need to request resources to the operative system and
every time the thread completes its job — when its run() method ends — it must be
collected as garbage. The typical solution, in this case, is the usage of a pool of
threads, which, on the other hand, needs some kind of lifecycle.

The pool needs to be initialized with a minimum number of threads. When the
application ends, the pools should shut down and release all the resources. Even when
the pool is active, you can have a different policy for the minimum number of instances
of thread to keep alive or how to manage the creation of new instances when needed.
You could limit the number of threads forcing the client to wait, or create a new thread
every time you need. This is something more than a simple Executor that concurrent
APIs abstracts with the ExecutorService interface.

The ExecutorService is then the abstraction for specific Executor, which needs to be
initialized and shut down to allow for the execution of Runnable objects in an efficient
and optimized way. The way this is happening depends on the specific implementation.
One of the most important is ThreadPoolExecutor. It manages a pool of worker threads
and a queue of tasks to execute.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 54

Depending on the configured policy, it reuses an available thread or creates a new one
in order to consume the tasks from a queue.

The concurrent APIs provide different implementations that are available through
some static factory methods of the Executors class. The most common are
Executors.newSingleThreadExecutor(), which create an executor that will process a
single task at a time, and Executors.newFixedThreadPool(N), which creates an executor
with an internal pool of N threads.

It’s important to note that an ExecutorService also provides the option of executing
Callable<T> implementations. While the Runnable interface defines a run() method,
which returns Unit, a Callable<T> is a generic interface, which defines the call()
method that returns an object of type T:

interface Callable<T> {
 fun call(): T
}

You can think of a Callable<T> as a Runnable that actually returns an object of type T at
the end of the task. You can ask the ExecutorService to run the given Callable<T>
using the invoke() method, getting a Future<T> in return. The Future<T> provides a
get() method, which blocks until the result of type T is available or throws an exception
in case of error or interruption.

Sample usage:

val executor = Executors.newFixedThreadPool(4)
(1..10).forEach {
 executor.submit {
 print("[Iteration $it] Hello from Kotlin Coroutines! ")
 println("Thread: ${Thread.currentThread()}")
 }
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Executor. This makes sure that, when you
click the button, the method getImageUsingExecutors() is called. Here is the method
definition:

fun getImageUsingExecutors() {
 // Download image
 val executor = Executors.newFixedThreadPool(4)
 executor.submit(myRunnable)
}

Here, myRunnable in the MainActivity.kt is a instance of MyRunnable class, which
you’ve already created during the Thread section of this chapter.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 55

Run the app.

Download image using Executor

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using Executor

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 56

The main advantages of using ThreadPoolExecutor in an Android application are:

• Powerful task execution framework as it supports task addition in a queue, task
cancellation and task prioritization.

• Reduces the overhead associated with thread creation as it manages a required
number of threads in its thread pool.

• Reduces boilerplate code as it abstracts most of the codebase behind factory method
with sane defaults.

However, although ExecutorService implementations provide an optimized usage of
threads in terms of creation and reuse, they don’t solve the problems related to context
switching between threads.

WorkManager
Announced at Google I/O 2018 as part of Jetpack, WorkManager aims to simplify the
developer experience by providing a first-class API for system-driven background
processing. The WorkManager API makes it easy to specify deferrable, asynchronous
tasks and when they should run. It is intended for background jobs that should run even
if the app is no longer in the foreground. Where possible, it delegates its work to a
JobScheduler, Firebase JobDispatcher, or Alarm Manager + Broadcast receivers. If your
app is in the foreground, it will even try to do the work directly in your process. The task
is still guaranteed to run, even if your app is force-quit or the device is rebooted.

WorkManager chooses the appropriate way to run your task based on such factors as
the device API level and the app state.

By default, WorkManager runs each task immediately, but you can also specify the
conditions the device needs to fulfill before the task can proceed, including network
conditions, charging status and the amount of storage space available on the device. If
WorkManager executes one of your tasks while the app is running, it can run your task
in a new thread in your app’s process.

If your app is not running, WorkManager chooses an appropriate way to schedule a
background task — depending on the device API level and included dependencies. You
don’t need to write device logic to figure out what capabilities the device has and
choose an appropriate API; instead, you can just hand your task off to WorkManager
and let it choose the best option.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 57

WorkManager Process Flow

Sample usage:

// A simple Worker
class DoSomeWorker : Worker() {
 // This method will run in background thread and WorkManger
 // will take care of it
 override fun doWork() : WorkerRequest() {
 doSomeWork()
 return WorkResult.SUCCESS
 }
}

// Usage
// Create the request
val request : WorkRequest = OneTimeWorkRequestBuilder<DoSomeWorker>()
 .build()
// Enqueue the request
val workManager : WorkManager = WorkManager.getInstance()
workManager.enqueue(request)

In short, the WorkManager is another library that is trying to solve the old problem of
executing long-running jobs on the Android platform. It delegates the logic to different
components that are available only on specific versions of the platform. If you accept to
use this library, you also accept all the fallbacks and workarounds used to enable
support for older platforms/APIs. WorkManager is seen as the third attempt by Google
to solve the job management on Android Platform and probably not the last.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 58

RxJava + RxAndroid
Reactive programming is an asynchronous programming paradigm concerned with data
streams and the propagation of change. The essence of reactive programming is the
observer pattern.

Note: The observer pattern is a software design pattern wherein data sources or
streams, called observables, emit data and one or more observers, who are
interested in getting the data, subscribe to the observable.

In reactive programming, you are allowed to create data streams from anything
including Array, ArrayList, etc. These data streams can be observed, modified, filtered
or operated upon. You can use a stream as an input to another one. You can even use
multiple streams as inputs to another stream. You can merge two streams. You can filter
a stream to get another one that has only those events you are interested in. You can
map data values from one stream to another one. A typical data stream can emit three
different values: one on when the event occurs, one on when the error occurs or one on
when the event is completed.

RxJava is a library that makes it easier for you to implement reactive programming
principles on any JVM-based platform, including Android. To manage threads, RxJava
has a helper class called Schedulers. Schedulers are how you tell where the observer
and observables should run.

Some general use Schedulers to observe:

• Schedulers.computation(): Used for CPU intensive tasks.

• Schedulers.io(): Used for IO bound tasks.

• Schedulers.from(Executor): Used with custom ExecutorService.

• Schedulers.newThread(): It always creates a new thread when a worker is needed.

This is where RxAndroid library comes into the picture, which plays a major role in
supporting multi-threading concepts in Android applications. It provides a Scheduler
that schedules on the main thread or any given Looper.

Sample usage:

Observable.just("Hello", "from", "RxJava")
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(/* an Observer */);

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 59

This will execute the Observable on a new thread and emit results through onNext() on
the main thread.

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.RxJava. This makes sure that when you
click the button, the method getImageUsingRx() is called. Here is the method
definition:

var single: Disposable? = null
fun getImageUsingRx() {
 // Download image
 single = Single.create<Bitmap> { emitter ->
 DownloaderUtil.downloadImage()?.let { bmp ->
 emitter.onSuccess(bmp)
 }
 }.observeOn(AndroidSchedulers.mainThread())
 .subscribeOn(Schedulers.io())
 .subscribe { bmp ->
 // Update UI with downloaded bitmap
 imageView?.setImageBitmap(bmp)
 }
}

override fun onDestroy() {
 super.onDestroy()

 // Cleanup disposable if it was created i.e not null
 single?.dispose()
}

Note: It is important that you call dispose() on the Single instance when the
work is done, possibly in the onDestroy() of the activity so as to release resources
it would be holding and close the stream.

Also note that the topic of reactive extensions is pretty vast; covering the
mechanics of its functionalities is out of the scope of this book. The example
shown here is for comparison purpose only and you can learn more in “Chapter 14:
Coroutines and RxKotlin Comparison.”

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 60

Run the app.

Download image using RxJava

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Download image using RxJava

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 61

Although reactive programming is a compelling tool and solves a lot of complex
concurrency problems, the learning curve for RxJava is very steep and complex. It is a
different approach towards programming and can lead to some confusion when
programming larger apps.

Coroutines
Now that you have a clear idea about various ways of doing asynchronous work in
Android, as well as the pros and cons, let’s come back to Kotlin coroutines. Kotlin
coroutines are a way of doing things asynchronously in a sequential manner. Creating
coroutines is cheap versus creating threads.

Note: Coroutines are completely implemented through a compilation technique
(no support from the VM or OS side is required), and suspension works through
code transformation.

Coroutines are based on the idea of suspending functions: functions that can stop the
execution when they are called and make it continue once it has finished running their
own task. Enabling Kotlin coroutines in Android involves just a few simple steps. To
show how easy it is to enable coroutines, head back to the starter project and add the
Android coroutine library dependency into your app’s build.gradle file under
dependencies block, replacing the line // TODO: Add Kotlin Coroutine Dependencies
here with the following:

dependencies {
 ..
 // Coroutines
 final def coroutineVer = "1.0.1"
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:
$coroutineVer"
 implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:
$coroutineVer"
}

Note: In order to use the stable Coroutines v1.0.1, the accompanying Koltin
version should be v1.3.0 and above. Make sure that the Kotlin standard library is at
least v1.3.0

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 62

Next, inside your MainActivity.kt file, add the implementation for the method
getImageUsingCoroutines() by replacing // TODO: add implementation here with the
below code snippet:

GlobalScope.launch {
 // Download Image in background
 val deferredJob = async(Dispatchers.IO) {
 DownloaderUtil.downloadImage()
 }
 withContext(Dispatchers.Main) {
 val bmp = deferredJob.await()
 // Update UI with downloaded bitmap
 imageView?.setImageBitmap(bmp)
 }
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Coroutine.

This makes sure that when you click the button, the method
getImageUsingCoroutines() is called.

Run the app.

Download image using Coroutine

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 63

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the; the spinner animates while the image
is being downloaded.

Download image using Coroutine

A lot has already been explained about the mechanics of Kotlin coroutines in the
previous chapters; in the subsequent chapters, you will mostly cover the usage of Kotlin
coroutines in the Android apps.

Introducing Anko
While Kotlin does remove much of the verbosity and complexity typically associated
with Java, no programming language is perfect and, thus, libraries that build on top of
the language are born. Anko is one such library that uses Kotlin and provides a lot of
extension functions to make your Android development easier.

Note: That’s how Anko got its name: (An)droid (Ko)tlin.

Anko was originally designed as a single library. As the project grew, adding Anko as a
dependency began to have a significant impact on the size of the APK (Android
Application Package).

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 64

Today, Anko is split across several modules:

• Commons: Helps you perform the most common Android tasks, including displaying
dialogs and launching new Activities.

• Layouts: Provides a Domain Specific Language (DSL) for defining Android layouts.

• SQLite: A query DSL and parser that makes it easier to interact with SQLite
databases.

• Coroutines: Supplies utilities based on the kotlinx.coroutines library.

You can see the differences in a sample comparison, below.

Using language provided coroutines:

button.setOnClickListener {
 launch(UI){
 val userId = fetchUserString("user_id_1").await()
 val user = deserializeUser(userId).await()
 showUserData(user)
 }
}

Using an Anko-provided coroutine helper:

button.onClick {
 val userId= bg { fetchUserString("user_id_1").await() }
 val user = bg { deserializeUser(userId).await() }
 showUserData(user)
}

onClick and bg are some of many helper functions Anko provides for making the
process of handling coroutines even simpler, which will be covered in depth in later
chapters.

Key points
• Android is inherently asynchronous and event-driven, with strict requirements as

to which thread certain things can happen on.

• The UI thread — a.k.a. main thread — is responsible for interacting with the UI
components and is the most important thread of an Android application.

• Almost all code in an Android application will be executed on the UI thread by
default; blocking it would result in a non-responsive application state.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 65

• Thread is an independent path of execution within a program allowing for
asynchronous code execution, but it is highly complex to maintain and has limits on
usage.

• AsyncTask is a helper class which simplifies asynchronous programming between UI
thread and background threads on Android. It does not work well with complex
operations based on Android Lifecycle.

• Handler is another helper class provided by Android SDK to simplify asynchronous
programming, but requires a lot of moving parts to set up and get running.

• HandlerThread is typically a thread that is ready to receive a Handler because it has
a Looper and a MessageQueue built into it.

• Service is a component that is useful for performing long (or potentially long)
operations without any UI, and it runs in the main thread of its hosting process.

• IntentService is a service that runs on a separate thread and stops itself
automatically after it completes its work; however, it cannot handle multiple
requests at a time.

• Executors is a manager class that allows running many different tasks concurrently
while sharing limited CPU time, used mainly to manage thread(s) in an efficent
manner.

• WorkManager is a fairly new API developed as part of JetPack libraries provided by
Google, which makes it easy to specify deferrable, asynchronous tasks and when they
should run.

• RxJava + RxAndroid are libraries that make it easier to implement reactive
programming principles in the Android platform.

• Coroutines make asynchronous code look like synchronous and work pretty well
with Android platform out of the box.

• Anko is a library that uses Kotlin and provides a lot of extension functions to make
our Android development easier.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 66

Where to go from here?
Phew! That was a lot of background on asynchronous programming in Android! But the
good thing is that you made it!

In the upcoming chapters, you dive deeper into how you can leverage coroutines in
Android apps to handle async operations while keeping in sync with various nuances of
the Android platform, such as respecting lifecycles of an app and efficient context
switching to facilitate the various use cases of apps to fetch-process-display data.

Kotlin Coroutines by Tutorials Sample Chapter 15: Coroutines on Android: Part 1

raywenderlich.com 67

WWhere to Go From Here?

We hope you enjoyed this sample of Kotlin Coroutines by Tutorials!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

1. What Is Asynchronous Programming?: Before getting you into the magic of
coroutines, we’ll help you understand what problem coroutines will solve for you.
You’ll learn what it means to be asynchronous and how to escape from an
“indentation hell.” This is a fundamental chapter in order to understand the basics
of multi-threading and concurrent programming.

2. Setting Up Your Build Environments: This tutorial-style chaptre will get your
hands dirty as soon as possible — this is where you will set your environment and
get ready to write your first coroutine.

3. Getting Started with Coroutines: Learn the core concepts of coroutines and how
you can launch them using a builder. You’ll also learn about jobs and how to
manage dependencies between them.

4. Suspending Functions: This is the main concept around coroutines. Here, you’ll
learn how to define a suspending function and how to manage its results.

5. Async/Await: Synchronization is a fundamental part of every concurrent
framework, and coroutines aren’t any different. In this chapter, you’ll learn how to
master the async and away functions in order to achieve an efficient
synchronization between tasks.

raywenderlich.com 68

6. Building Sequences & Iterators with Yield: Functional programming is one of
the coolest concept you can use in Kotlin and, in this chapter, you’ll see how you can
use coroutines with sequences and iterators in order to manage theoretically
infinite collections of data.

7. Coroutine Contexts & Dispatchers: Long and expensive tasks that run in the
background and want to display the results on the main thread is a typical scenario
in programming. In this chapter, you’ll understand how to achieve this through
Context and Dispatchers.

8. Exception Handling & Cancellation: Running a task is a relatively simple
operation. Problems arise when errors occur or when you need to cancel the task
because it becomes obsolete. In this chapter, you’ll learn how to do handle these
scenarios and how coroutines can manage dependencies in these cases.

9. Coroutines as State Machines: Every time you use a framework, it’s important to
understand how it works under the hood in order to fix unusual problems or to
extend the way it works. In this chapter, you’ll learn what is a state machine and
how it’s used by coroutines in order to do its magic.

10. Channels: Think about a box: Somebody can put objects into it and somebody else
can remove them. Imagine, then, that the first actor, the producer, suspends its job
if the box is full and that the second actor, the consumer, does the same if the box is
empty. This is the logic behind channels, which you’ll learn about in this chapter.

11. Producers & Actors: This has nothing to do with Hollywood! Here, you’ll learn a
different concurrent model that will allow you to manage the state of your
application in a convenient and type-safe way.

12. Broadcast Channels: The channel you’ve covered in Chapter 10 is usually between
a single sender and a single receiver. In this chapter, you’ll learn what is happening
exactly and what you can do if you have multiple receivers.

13. Coroutine Operators: Learn the most important operators that you can use in
order to elaborate and combine streams, as you usually do with Rx.

14. Coroutines & RxKotlin Comparison: Coroutines are not the silver bullet of
concurrent programming. Here, you’ll learn what is the difference between
coroutines and RxKotlin and how to understand which is the best for you.

15. Coroutines on Android: Part 1: Learn how you can manage concurrency and
multi-threading in Android and why coroutines can help you simplify and optimize
code in many ways.

Kotlin Coroutines by Tutorials Sample Where to Go From Here?

raywenderlich.com 69

16. Coroutines on Android: Part 2: Learn how to use different contexts in order to
run long tasks in the background returning data to the main thread. You’ll learn
how to use async callbacks for long-running tasks, such as a database or network
access into sequential tasks, while also keeping track of and handling app lifecycles.

17. Coroutines on Android: Part 3: Learn how to use Kotlin coroutines in an Android
app with logging, exception handling, debugging and testing of code. Anko library
will also be covered.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/kotlin-coroutines-by-tutorials

We hope you enjoy the book!

— The Kotlin Coroutines by Tutorials Team

Kotlin Coroutines by Tutorials Sample Where to Go From Here?

raywenderlich.com 70

