

Table of Contents: Overview
About This Book Sample 4..

What You Need 10...

Book License 11..

Book Source Code & Forums 12...

Chapter 9: Model-View-ViewModel Theory 13...............

Chapter 11: MVVM Sample with Android
Architecture Components 21..

Where to Go From Here? 38..

Advanced Android App Architectures Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4..

What You Need 10...

Book License 11..

Book Source Code & Forums 12...

Chapter 9: Model-View-ViewModel Theory 13...............
The Model-View-ViewModel pattern 13...
MVVM by example 17..
MVVM advantages and concerns 19...
Key points 20...
Where to go from here? 20..

Chapter 11: MVVM Sample with Android
Architecture Components 21..

Getting started 21...
Current architecture layers 23...
Creating a movie repository 24..
Creating your ViewModels 26..
Using LiveData with your ViewModels 29...
The MVVM architecture 36...
Key points 37...

Where to Go From Here? 38..

Advanced Android App Architectures Sample

raywenderlich.com 3

AAbout This Book Sample

In Advanced Android App Architectures, you'll find a diverse and hands-on approach to
architecting your apps on Android. Android development can be fun; however, scaling
an app can have its fair share of problems.

In this book, you'll learn why a conversation on architecture is the first important step
to taking your app to the next level! This book will introduce you to a number of
architectures, including Model View Controller, Model View Presenter, Model View
Intent, Model-View-ViewModel and VIPER. You'll learn theory, explore samples that
you will refactor and learn the fundamentals of testing.

We are pleased to offer you this sample from the full Advanced Android App
Architectures book. The chapters that follows will introduce you to the Model-View-
ViewModel architecture and start you building an app to store your favorite movie
titles.

The chapter included:

• Chapter 9: Model-View-ViewModel Theory: MVVM (Model-View-ViewModel) is
an architecture that's gained a lot of attention. It was first presented to specifically
address event-driven programming. In this chapter, you'll gain deep insight into what
makes this architecture so exciting.

• Chapter 11: Model-View-ViewModel Sample with Android Architecture
Components: In this chapter, you'll learn how to further refactor the sample app to
conform to MVVM; however, this time, you'll learn how to leverage Google's
Architecture Components.

raywenderlich.com 4

The book is ready for purchase at:

• https://store.raywenderlich.com/products/advanced-android-app-architectures.

Enjoy!

The Advanced Android App Architectures Team

Advanced Android App Architectures Sample About This Book Sample

raywenderlich.com 5

Advanced Android App Architectures
By Yun Cheng and Aldo Olivares Domínguez

Copyright ©2018 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Advanced Android App Architectures Sample Advanced Android App Architectures

raywenderlich.com 6

Dedications
"To my mom, the first software engineer I ever knew!"

— Yun Cheng

"To my family and friends, for all the support that I got during the
writing of this book."

— Aldo Olivares Domínguez

Advanced Android App Architectures Sample Advanced Android App Architectures

raywenderlich.com 7

About the Authors
Yun Cheng is an author on this book. Yun is a software engineer for
the Runkeeper app at ASICS Digital in Boston, MA. If she's not
running marathons or facilitating for the Girls Who Code club in
Cambridge, MA, you can probably find her setting off the kitchen fire
alarm with her cooking. You can also reach out to her on Twitter at
@yuncheng13.

Aldo Olivares Domínguez is an author of this book. Aldo is a
Software Engineer passionate about creating amazing apps with great
user interfaces. He's been an Android Developer since 2012 working
primarly as a Freelancer and Instructor. Twitter: @aldominio.

About the Editors
Nick Bonatsakis is a tech editor of this book. Nick is an accomplished
software engineer with over a decade of experience in mobile
development across both Android and iOS. He is a passionate
technologist, musician, father and husband. He currently works as an
independent consultant under his own company, Velocity Raptor Inc.

Vijay Sharma is the final pass editor of this book. Vijay is a husband,
a father and a senior mobile engineer. Based out of Canada's capital,
Vijay has worked on dozens of apps for both Android and iOS. When
not in front of his laptop, you can find him in front of a TV, behind a
book, or chasing after his kids. You can reach out to him on Twitter
@vijaysharm or on LinkedIn @vijaysharm.

Manda Frederick is an editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

Advanced Android App Architectures Sample Advanced Android App Architectures

raywenderlich.com 8

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Advanced Android App Architectures Sample Advanced Android App Architectures

raywenderlich.com 9

WWhat You Need

To follow along with this book, you'll need the following:

• Android Studio 3.2.1, available at https://developer.android.com/studio/index.html.
This is the environment in which you'll develop the apps in this book.

If you haven't installed the latest versions of Android Studio, be sure to do that before
continuing on with the book.

raywenderlich.com 10

LBook License

By purchasing Advanced Android App Architectures, you have the following license:

• You are allowed to use and/or modify the source code in Advanced Android App
Architectures in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Advanced Android App Architectures in as many apps as you want, but must include
this attribution line somewhere inside your app: “Artwork/images/designs: from
Advanced Android App Architectures, available at www.raywenderlich.com.”

• The source code included in Advanced Android App Architectures is for your personal
use only. You are NOT allowed to distribute or sell the source code in Advanced
Android App Architectures without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 11

BBook Source Code &
Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 12

9Chapter 9: Model-View-
ViewModel Theory
By Aldo Olivares Dominguez

In this chapter you will learn about a distant relative of MVP — the MVVM
Architecture Pattern.

First, you will explore how MVVM works at a high level. You will learn about each of its
layers and how they communicate between each other. You will also learn how MVVM
improves the testability of your apps by providing a clear level of abstraction to your
code.

Finally, you will understand the advantages and limitations of MVVM to know when
and how to apply it properly.

Ready? Let's get started!

The Model-View-ViewModel pattern
MVVM stands for Model-View-ViewModel. MVVM is an architectural pattern whose
main purpose is to achieve separation of concerns through a clear distinction between
the roles of each of its layers:

• View displays the UI and informs the other layers about user actions.

• ViewModel exposes information to the View.

• Model retrieves information from your datasource and exposes it to the ViewModels.

At first glance, MVVM looks a lot like the MVP and MVC architecture patterns from the
last chapters.

raywenderlich.com 13

The main difference between MVVM and those patterns is that there is a strong
emphasis that the ViewModel should not contain any references to Views. The ViewModel
only provides information and it is not interested in what consumes it. This makes it
easy to create a one-to-many relationship wherein your Views can request information
from any ViewModel they need.

Also of note regarding the MVVM architecture pattern is that the ViewModel is also
responsible for exposing events that the Views can observe. Those events can be as
simple as a new user in your Database or even an update to a whole list of a movie
catalog. Now, you will explore how each of the MVVM layers work one by one.

The Model
The Model, better known as DataModel, is in charge of exposing relevant data to your
ViewModels in a way that is easy to consume. It should also receive any events from the
ViewModel that it needs to create, read, update or delete any necessary data from the
backend.

In Android, you usually create Models as Kotlin data classes that represent the
information that you obtain from your data source, such as an API or a database. For
example, say you have an app that displays information about the latest movies. You
would surely create a Movie class that contains data such as the title, description, time
and release date of the movie.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 14

When following this architecture pattern, you should strive to stick to the single-
responsibility principle of software design, creating a Model for each logical object in
your domain. This will make it much easier for you to create the necessary ViewModels
later on.

Since the Model implementation does not change much from the previous patterns, you
won't dive deeper into this layer, here. However, if you want to learn more, review the
Models section of the MVC architecture pattern chapter.

The ViewModel
The ViewModel retrieves the necessary information from the Model, applies the
necessary operations and exposes any relevant data for the Views.

The Android platform is responsible for managing the lifecycle events of the classes
that handle the UI, such as activities and fragments. The operating system can destroy
or re-create your activities at any time in response to certain user actions or events.

The problem is that, if Android destroys or re-creates an activity or fragment, all data
contained within those components is lost. For example, your app may include a list of
movies in one of its activities. If the activity is destroyed and re-created, the list of
movies will have to be retrieved again. This may slow down your app if the list is housed
in an external database or API.

The most common solution to this problem is to save your data in your
onSaveInstanceState() bundle and restore it later in your onCreate() method. But this
approach only works for primitive data such as Integers or simple classes that can be
serialized and deserialized.

Thanks to Google's new Architecture Components, you now have a special class to build
your ViewModels called ViewModel.

The ViewModel class is specially designed to manage and store information in a
lifecycle-aware manner. This means that the data stored inside it can survive
configuration/lifecycle changes like screen rotations.

The ViewModel remains in memory until the lifecycle object to which it belongs has
completely terminated. This behavior applies to activities when they finish and in
fragments when they are detached.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 15

In the next illustration, you can see how the ViewModel remains active and retains
information through the whole lifecycle of an activity, even when it is destroyed:

Note: You don't need to use Android's architecture components to implement
your own ViewModels. It is just a component that Google provides to make
development easier and reliable.

To communicate changes in the data, ViewModels can expose events that the Views can
observe and react accordingly. Those events can be as simple as a new user having been
created in the database or an update to an entire movies catalog. This way, ViewModels
don't need to have any reference to Activities, Fragments or Adapters.

You will learn much more about Google's ViewModel class in the next chapter, so don't
worry if something seems confusing at the moment.

The View
The View is what most of us are already familiar with, and it is the only component that
the end user really interacts with. The View is responsible for displaying the interface,
and it is usually represented in Android as Activities or Fragments. Its main role in the
MVVM pattern is to observe one or more ViewModels to obtain the necessary
information it needs and update the UI accordingly.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 16

The View also informs ViewModels about user actions. This makes it easy for the View
to communicate to more than one Model. Views can have a reference to one or more
ViewModels, but ViewModels can never have any information about the Views.

In Android, you will usually communicate the data between the Views and the
ViewModels with Observables, using libraries such as RxJava, LiveData or
DataBinding.

You can see how the interaction between each layer works, below:

Note: One little trick that will help you know if your Views and your ViewModels
are properly detached is to verify that there is no reference to any com.android.*
package in your ViewModels. There are only a few exceptions to this rule, like the
Android Architecture Components package: com.android.arch.*

MVVM by example
The next two chapters will cover practical examples of MVVM. You will learn how to
rewrite the Movies app with two different approaches: Using architecture components
and using Data Binding.

To better understand the theory, let's dig into a basic example that shows you how you
would connect a View to a ViewModel in a TODO list app. There's no need to type this
code out any where, the code is presented here as an example. Keep reading and we'll
concretely break down the pieces that make MVVM.

class MainViewModel: ViewModel() {

 //1
 private var items: LiveData<List<Item>>? = null
 //2
 fun getItems(): LiveData<List<Item>> {

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 17

 if (items == null) {
 return db.itemDao().getAll()
 }
 return items ?: emptyList()
 }
}

class MainActivity: AppCompatActivity() {

 //3
 private lateinit var mainViewModel: MainViewModel

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 //4
 mainViewModel =
ViewModelProviders.of(this).get(MainViewModel::class.java)

 //5
 recyclerView.layoutManager = LinearLayoutManager(this,
LinearLayoutManager.VERTICAL, false)
 val adapter = ItemAdapter()
 recyclerView.adapter = adapter

 //6
 mainViewModel.getItems().observe(this, Observer {
 if (it != null) {
 adapter.list.clear()
 adapter.list.addAll(it)
 adapter.notifyDataSetChanged()
 }
 })
}

Note: The Model code has been omitted for brevity.

Taking each commented section in turn:

1. The ViewModel declares a property that will contain a LiveData list of items. The
LiveData class allows any View to observe for any changes on the list and update
the UI.

2. getItems() is an accessor method that returns the list of TODO items. If the list of
items is null, you call the getAll() method of your ItemDao interface to retrieve
them from your database.

3. The View holds a reference to your ViewModel. The ViewModel property is
defined as a lateinit var so that the compiler knows it won't be initialized until
after class initialization.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 18

4. In the onCreate() method, you should initialize every reference to the ViewModels
you will need. In this case, to the MainViewModel.

5. Next, you configure the recycler view layout and provide an adapter.

6. Finally, you call the observe() method of your LiveData list of Items. If there is any
change, you can act accordingly to update the necessary UI elements. In this case,
you are updating the list property of the adapter to update your RecyclerView.

As you can see, it's fairly straightforward to implement your ViewModel along with your
Views. Once you master them, you will see how they help to make your code easy to
test.

MVVM advantages and concerns
One problem that the MVC architecture patterns have in common is that the
Controllers and the Presenters are sometimes very hard to test due to their close
relationship with the View layer. By handling all data manipulation to ViewModels, unit
testing becomes very easy since they don't have any reference to the Views.

One problem present in some architectures, MVC in particular, is that the business
logic is quite difficult to test due to a lack of separation from the View logic. By
confining all data manipulation to the ViewModel, and by keeping it free of any View
code, the business logic becomes unit testable, as it can be executed without requiring
the Android runtime.

Another problem with the MVC pattern is that there is usually confusion as to which
code goes where. Sometimes, when code doesn't fit in the Model or the View, it is put in
the Controller. This often leads to a common problem known as fat controllers,
whereby the controller classes become overly large and difficult to maintain.

MVVM solves the fat controller issue by providing a better separation of concerns.
Adding ViewModels, whose main purpose is to be completely separated from the Views,
reduces the risk of having too much code in the other layers.

MVVM vs. MVC vs. MVP
You might be wondering why you would want to use MVVM over MVC or MVP. After
all, MVC and MVP are among the most common Android architecture patterns and are
both very easy to understand. There has been endless debate on which approach is best,
but the answer largely boils down to personal preference.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 19

As we usually say in the development world, there is no silver bullet to solve every
software design issue. And although MVVM is a very useful development pattern, it also
has some disadvantages.

The main disadvantage of this architecture pattern is that it can be too complex for
applications whose UI is rather simple. Adding as much level of abstraction in such
apps can result in boiler plate code that only makes the underlying logic more
complicated.

At the end of the day, it is up to each developer to decide which is the best architecture
pattern for each development project.

Key points
• MVVM stands for Model-View-ViewModel.

• MVVM is an architecture pattern whose main objective is the separation of concerns.

• Views display the UI and inform about user actions.

• The ViewModel gets the information from your Data Model, applies the necessary
operations and exposes the relevant data to your Views.

• The ViewModel exposes backend events to the Views so they can react accordingly.

• The Model, also known as the DataModel, retrieves information from your backend
and makes it available to your ViewModels.

• MVVM facilitates Unit Testing of your code.

• MVVM may be too complex for applications with simple UI.

Where to go from here?
There are several patterns that you could use to build your Android Apps. The Model-
View-ViewModel architecture pattern is just one of the many tools that helps you write
clear and concise code. But MVVM combines the advantages of the MVP and MVC
architecture patterns with other useful features such as DataBinding. It improves the
testability of your code by providing a greater level of abstraction and reducing the
amount of boiler plate code in your projects.

In the next chapter, you will apply your knowledge by re-writing the Movies app using
MVVM.

Advanced Android App Architectures Sample Chapter 9: Model-View-ViewModel Theory

raywenderlich.com 20

11Chapter 11: MVVM Sample with
Android Architecture Components
By Aldo Olivares Dominguez

In the previous chapter, you learned how MVVM works by understanding how the
Model, View and ViewModel interact with each other, and about their responsibilities
and limitations.

In this chapter, you are going to use your newly acquired knowledge to rebuild your
Movies app to use MVVM by integrating the ViewModel and LiveData components
from the Android Architecture Components or AAC.

By the end, you will have learned:

• How to migrate an app from the MVC architecture to the MVVM architecture.

• How to integrate the ViewModel with the View layer of your apps.

• How to integrate your Models with your ViewModels.

• How to create a centralized repository for your data sources.

• How to use LiveData to work with asynchronous responses from webservices or APIs.

• And much more!

Getting started
Open the starter project attached to this chapter in Android Studio 3.1 or greater by
going to File ▸ New ▸ Import Project, and selecting the build.gradle file in the root of
the project.

raywenderlich.com 21

Note: You may notice that the starter project looks a little different than the one
from previous chapters. Don’t worry, this is intended to give you a head start for
this chapter and we will explore it shortly.

The data package has three packages related to the backend of your app:

• The db package contains the files required for your Room database: the
MovieDatabase.kt and the MovieDao.kt files.

• The model package contains the models for your app: the Movie model and the
MovieResponse model.

• The net package contains the files required by Retrofit to communicate with the
TMDB web service: MoviesAPI.kt and RetrofitClient.kt.

Before moving on, make sure to replace your TMDB API key in the RetrofitClient.kt
file. For this, you just need to update the value of the API_KEY constant at the top of
the file.

The ui package contains three packages related to the front end of your app such as the
Fragments and the Activities.

Take all the time you need to familiarize yourself with the project. You will be spending
a lot of time on each of the files. Once you are ready, build and run the app on a device
or emulator to see it in action. You should now see the basic app running.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 22

Current architecture layers
Before making any change to the code of your app, take a quick look at the current
architecture, just to refresh:

It’s pretty easy to see what’s going on: Activities and Fragments communicate with the
data store directly. While this architecture is quite easy to understand, and despite it
working just fine, there are some disadvantages:

• Your views are individually interacting directly with the TMDB API and with your
Room database. There should be a centralized repository to get information from all
your backends, including your APIs and your DB.

• Your current structure is violating the single responsibility principle. Views are doing
too much work; they should only be in charge of displaying the UI and receiving
events from the user.

Your mission, should you choose to accept it, will be to fix each of these flaws with the
MVVM architecture pattern by adding ViewModels and LiveData to the mix. At the end,
you will compare the old architecture with the new one to see how things have
improved.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 23

Creating a movie repository
You will start by creating a centralized repository to retrieve movies for your app, both
from the TMDB API and from your Room database.

Under the data package, create a new Kotlin class and name it MovieRepository.

Replace the autogenerated class with the following:

class MovieRepository(application: Application) {
 //1
 private val movieDao: MovieDao
 private val retrofitClient = RetrofitClient()
 //2
 init {
 val movieDatabase = MovieDatabase.getInstance(application)
 movieDao = movieDatabase.movieDao()
 }
 //3
 fun getSavedMovies(): List<Movie> {
 return movieDao.getAll()
 }
 //4
 fun saveMovie(movie: Movie) {
 thread {
 movieDao.insert(movie)
 }
 }
 //5
 fun updateMovie(movie: Movie) {
 thread {
 movieDao.updateMovie(movie)
 }
 }
 //6
 fun deleteWatchedMovies() {
 thread {
 movieDao.deleteMovies(true)
 }
 }
}

Note: Whenever you add code, make sure to import the appropriate packages by
pressing Alt + Enter on Windows or Option + Enter on Mac.

Taking each commented section, in turn:

1. Here, you create the movieDao and retrofitClient properties. The retrofitClient
instance is initialized immediately since it does not require the app context.

2. Next, you initialize the movieDao property by creating a MovieDatabase instance.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 24

3. getSavedMovie() returns a list of all the movies stored in your Room database.

4. saveMovie() takes a movie as a parameter and uses the insert() method of the
movieDao to save it in your database.

5. updateMovie() takes a movie parameter and uses the updateMovie() method of your
movieDao to update the appropriate record in your database.

6. Finally, deleteWatchedMovies() deletes all the movies in your database whose
watched attribute is equal to true.

You may notice that the saveMovie() and updateMovie() methods are using the
thread() method from Kotlin’s standard library to create a separate thread and execute
database tasks. This is needed since database operations can take a long time to run
and may block the main thread in which your app is executing. Since UI operations
happen on the main thread, bogging it down with non-UI workloads will make the UI
stutter and become unresponsive.

Note: In the above code, you use Kotlin’s thread method to create a separate
thread rather than an async task for simplicity. This way, you don’t have to make
your MovieRepository class extend the AsyncTask class and implement different
methods.

The last step in creating the movie repository is to make it available to your other
classes with a single-entry point.

Open App.kt inside the root directory of your app and add the following method just
below onCreate():

fun getMovieRepository(): MovieRepository = MovieRepository(this)

The above method returns an instance of your MovieRepository. Since your
MovieDatabase needs a reference to your application context, the App file is the best
place to create an accessor method.

And that’s it! Now that you have created your movie repository and made it available
through your getMovieRepository() method, it is time to create your ViewModels.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 25

Creating your ViewModels
While it is possible to access the movie repository from your views, it is generally
considered a bad practice to have your Activities or Fragments communicate directly to
your backend.

Creating your movie repository was just the first part of migrating your app. In the
MVVM architecture, ViewModels are in charge of receiving requests from your Views,
communicating those requests to your Models and updating your backend accordingly.

You can create your own ViewModel classes from scratch. In fact, this is what
developers used to do before Google introduced the Android Architecture Components.
But now, you have an easy and consistent way of creating the ViewModels for our
Views: The ViewModel Architecture Component.

According to the official documentation:

The ViewModel class is designed to store and manage UI-related data in a
lifecycle conscious way. The ViewModel class allows data to survive configuration
changes such as screen rotations.

No way! This is exactly what you need for your app.

Start by opening build.gradle in your app directory. Add the following line inside the
dependencies block:

// Lifecycle Components
def lifecycleVersion = "1.1.1"
implementation "android.arch.lifecycle:extensions:$lifecycleVersion"

The code above adds the lifecycle part of the Android Architecture Components to your
dependencies.

Click the Sync Now button that should have appeared at the top of the editor and wait
until Android Studio has finished syncing your project.

Now that you have your dependencies ready it is time to create some sweet
ViewModel classes

Create a new class under the ui ▸ add package and name it AddMovieViewModel.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 26

Replace the autogenerated class with the following code:

//1
class AddMovieViewModel(application: Application) :
AndroidViewModel(application) {
 //2
 private val movieRepository =
getApplication<App>().getMovieRepository()
 //3
 fun saveMovie(movie: Movie) {
 movieRepository.saveMovie(movie)
 }
}

Taking each commented section in turn:

1. AddMovieViewModel extends from the AndroidViewModel class, which is a subclass of
the ViewModel class. If you were to take a look at the documentation for ViewModel,
you’d find that there is no need to override any method to make your data survive to
configuration changes. Everything is already taken care of for you.

2. Here, you get a reference to your movie repository using the getMovieRepository()
method that you created before.

3. saveMovie() uses your movie repository to save the movie passed as a reference to
the database.

Note: The only difference between the ViewModel and the AndroidViewModel class
is that the latter depends on your app’s context. This is useful when working with
other libraries, such as Room, but it also makes your app harder to test. We will
talk more about this in the MVVM Testing chapter.

Now that your ViewModel is ready, it’s time to use it.

Open AddMovieFragment.kt and add the following attribute to store a reference to an
instance of AddMovieViewModel:

private lateinit var viewModel: AddMovieViewModel

Once you have your attribute add the following code to override the onCreate()
method:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 viewModel =
ViewModelProviders.of(this).get(AddMovieViewModel::class.java)
}

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 27

ViewModelProviders is a special class that returns an existing ViewModel or creates a
new one while the scope of a given Fragment is alive. In this case, since you are passing
a reference to your AddMovieFragment, it will create a new AddMovieViewModel that will
stay alive during the whole lifecycle of your AddMovieFragment fragment.

The only step left is to use your ViewModel to save a movie when the user presses the
Save Movie button.

Locate the addMovie() method and replace the thread block and its contents with the
following call:

viewModel.saveMovie(movie)

As you can see, there is no need to create a thread inside your Fragment since your
MovieRepository is already creating one each time saveMovie() is called. This helps
you avoid code duplication inside your Views.

Build and Run the app. Try adding a movie to verify everything is working properly:

Easy, right?

Before creating the next ViewModels, you will need to learn about LiveData.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 28

Using LiveData with your ViewModels
In the past section, you created a ViewModel for your AddMovieFragment with a single
method to save a movie.

LiveData was not absolutely necessary since the movie was going to be saved to your
local database immediately, and there was no need to wait for a response.

But what happens if you need to retrieve a list of movies from a local database, such as
Room, or from a webservice, such as TMDB API?

In this case, you need to wait for a response to update your UI, and this is where
LiveData comes in handy.

LiveData is a data holder class, just like a List or a HashMap, that can be observed for
any changes within a given lifecycle. This basically means that you can attach an
Observer that will be notified about any modification on the wrapped data.

For example, say that you want to retrieve a list of users from your database with a
method like the following:

fun getUsers(): List<User> {
 return userDao().getAll()
}

There are two problems with the above approach. First, this method is passive; it only
retrieves the list of all users in the database when it is explicitly called upon to do so.
So, if you were to use it to back a list UI, you would have to call it every time you added,
inserted or deleted a user.

Second, the method is synchronous; it blocks the calling thread until the database
query is finished. if you execute long-running tasks in the UI thread, your app could be
stopped by the operating system and the user would get an Application Not
Responding Error or ANR

To solve this problem you could use LiveData to wrap your list of users:

fun getUsers(): LiveData<List<User>> {
 return users
}

Then, observe for any changes with an Observer like below:

getUsers().observe(this, Observer { users ->
 //Update UI with list of users
})

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 29

This approach is much better since the observer will notify any consumers of data
changes as they happen, removing the need to respond to those changes manually.

With the above in mind, change your app to make use of all the advantages of LiveData.
Open MovieDao.kt and change the getAll() method to return a list of LiveData
movies:

@Query("select * from movie")
fun getAll(): LiveData<List<Movie>>

Then, open MovieRepository.kt and update the getSavedMovies() method like below:

fun getSavedMovies(): LiveData<List<Movie>> {
 return movieDao.getAll()
}

As you can see, it is very easy to use LiveData along with any objects. Since LiveData is
a holder class you just need to wrap your return values with the LiveData component.

Finally, create a new class under the ui ▸ list package and name it
MovieListViewModel.

Replace the code inside with the following:

class MovieListViewModel(application: Application) :
AndroidViewModel(application) {
 //1
 private val movieRepository =
getApplication<App>().getMovieRepository()
 private val movieList = MediatorLiveData<List<Movie>>()
 //2
 init {
 getAllMovies()
 }
 //3
 fun getSavedMovies(): LiveData<List<Movie>> {
 return movieList
 }
 //4
 fun getAllMovies() {
 movieList.addSource(movieRepository.getSavedMovies()) { movies ->
 movieList.postValue(movies)
 }
 }
 //5
 fun deleteSavedMovies() {
 movieRepository.deleteWatchedMovies()
 }
 //6
 fun updateMovie(movie: Movie) {
 movieRepository.updateMovie(movie)
 }
}

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 30

Step by step:

1. First, you create the movieRepository and the movieList properties. You may have
noticed that the movieList property is a MediatorLiveData type. MediatorLiveData
is a subclass of LiveData that can hold data from different sources. It can also react
to onChanged events from LiveData objects.

2. Next, you call the getAllMovies() method as soon as the MovieListViewModel class
is initialized.

3. getSavedMovies() returns a LiveData list of movies stored in your movieList
property.

4. getAllMovies() sets the datasource of movieList from MovieRepository. It fetches
the list of movies by executing movieRepository.getSavedMovies() and posting the
value to movieList.

5. deleteSavedMovies() uses the deleteWatchedMovies() method from your
ViewModel to delete movies whose watched field is set to true.

6. updateMovie() updates the database representation of the passed-in movie.

Your ViewModel is now ready to be used inside your Fragment.

Open MovieListViewFragment.kt and add the following attribute to hold a reference
to your MovieListViewModel:

private lateinit var viewModel: MovieListViewModel

Initialize it inside the onCreate() method just like you did in AddMovieViewModel:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 viewModel =
ViewModelProviders.of(this).get(MovieListViewModel::class.java)
}

Now that your viewModel has been initialized, it’s time to use it.

Replace the thread block call inside onViewCreated() with the following:

viewModel.getSavedMovies().observe(this, Observer { movies ->
 movies?.let {
 moviesRecyclerView.adapter = MovieListAdapter(movies,
this@MovieListFragment)
 }
})

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 31

The above code uses the getSavedMovies() method from your ViewModel to retrieve a
LiveData list of movies. The observe() method attaches the Observer passed as a
parameter to the observers list of your LiveData object. Once the movies have been
retrieved from your database, your observer’s callback is executed and the adapter
receives the list of movies to be displayed in your recyclerView.

You might also notice that the observe method passes your Fragment, an instance of
LifecycleOwner, as the first parameter. By doing so, the observer is bound to the
Lifecycle object associated. This basically means three things:

1. After the Lifecycle object is destroyed, the observer is automatically destroyed.

2. If the Lifecycle is inactive, the observer isn’t called, even if your list changes.

3. LiveData objects, just like your ViewModel objects, are lifecycle-aware. You can share
data between your Activities, Fragments or even services.

Now, replace all the code inside deleteMovies() with the following:

viewModel.deleteSavedMovies()

The MovieList screen of your app is now ready! Build and run to see it in action:

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 32

Creating the ViewModel
The last step is to create the ViewModel for the Search Movies screen of your app.

Open MovieRepository.kt and add the following method:

fun searchMovies(query: String): LiveData<List<Movie>> {
 //1
 val data = MutableLiveData<List<Movie>>()
 //2
 retrofitClient.searchMovies(query).enqueue(object :
Callback<MoviesResponse> {
 //3
 override fun onFailure(call: Call<MoviesResponse>, t: Throwable) {
 Log.d(javaClass.simpleName, "Remember to add your KEY in your
RetrofitClient.kt file")
 }
 //4
 override fun onResponse(call: Call<MoviesResponse>, response:
Response<MoviesResponse>) {
 if (response.isSuccessful) {
 val movies = response.body()?.results
 data.value = movies
 }
 }
 })
 return data
}

Briefly, here’s what’s going on:

1. First, you create an empty MutableLiveData list of movies.

2. Next, you call the searchMovies() method of your retrofitClient to retrieve movies
that match the given query.

3. The onFailure() method is triggered if there is a problem with your call to the
TMDB API. Appropriate error handling has been omitted here for simplicity.

4. Once there is a successful response from the TMDB API, your movie list is set by
using the setValue() method of your MutableLiveData class.

You might notice that you are using MutableLiveData instead of LiveData.
MutableLiveData is a LiveData subclass that exposes two methods: setValue() and
postValue():

• setValue(): Sets the value of your data from the main thread.

• postValue(): Adds a task to the main thread to set the value of your data.

In short: Use the setValue() method if you are on the main thread and the postValue()

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 33

method if you are on a background thread.

Now, it’s time to create your ViewModel.

Create a new class under the ui ▸ search package and name it SearchViewModel.

Replace the auto-generated code inside the class with the following:

class SearchViewModel(application: Application) :
AndroidViewModel(application) {

 private val movieRepository =
getApplication<App>().getMovieRepository()

 fun searchMovie(query: String): LiveData<List<Movie>> {
 return movieRepository.searchMovies(query)
 }

 fun saveMovie(movie: Movie) {
 movieRepository.saveMovie(movie)
 }
}

The code above gets a reference to your movieRepository and creates two methods to
save and retrieve movies: the searchMovie() method and the saveMovie() method.

Now that your ViewModel is ready, the only thing left is to use it inside your Fragment.

Open SearchFragment.kt and add a property to store an instance of your
SearchViewModel class:

lateinit var viewModel: SearchViewModel

Initialize your attribute inside onCreate():

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 viewModel =
ViewModelProviders.of(this).get(SearchViewModel::class.java)
}

Replace the code inside getMovieList() with the following:

viewModel.searchMovie(query).observe(this, Observer { movies ->
 movies?.let {
 searchResultsRecyclerView.adapter = SearchAdapter(movies,
this@SearchFragment)
 }
})

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 34

The above uses the searchMovie() method of your ViewModel to retrieve the list of
movies from the TMDB API. Once the list of movies have been retrieved, your observer’s
callback is executed and the adapter is attached to your RecyclerView.

Finally, go to the onItemClick() method and replace the code inside the snackbar
action with the following:

viewModel.saveMovie(movie)
goToMainActivity()

The code above uses the saveMovie() method of your MovieRepository to save the
movie passed as a parameter and returns to the MainActivity.

Build and Run your app one last time to test your changes:

Awesome!

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 35

The MVVM architecture
At the beginning of this chapter, you reviewed the current architecture of your app
without MVVM. Take a look at what it looks like, now:

Your new architecture has the following advantages:

• Your Views only have one job: interacting with the user and displaying the UI.

• Your ViewModels handle all the interaction between your Models and your Views.

• You now have a centralized repository for your two different backend endpoints: your
local database and your external API.

• All your classes respect the single responsibility principle.

Although refactoring your app might seem like a daunting task at first, it pays off in the
long run. Having a robust architecture like MVVM makes your code scalable and easy to
maintain.

In the next chapter, you will learn how to further improve your code by integrating the
data binding library to bind your UI components in your layouts to your data sources.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 36

Key points
• The ViewModel class is designed to store and manage UI-related data in a lifecycle-

aware way.

• The ViewModel class allows data to survive configuration changes, such as screen
rotations.

• LiveData is a data holder class, just like a List or a HashMap, that can be observed for
any changes within a given lifecycle.

• Having a robust architecture like MVVM makes your code scalable and easy to
maintain.

Advanced Android App Architectures SampleChapter 11: MVVM Sample with Android Architecture Components

raywenderlich.com 37

WWhere to Go From Here?

We hope you enjoyed this sample of Advanced Android App Architectures!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

1. Introduction: Android development can be fun; however, scaling an app can have
its fair share of problems. In this book and in this chapter, you'll learn why a
conversation on architecture is the first important step to taking your app to the
next level!

2. Model View Controller Theory: You'll start by learning about MVC (Model View
Controller) architecture. MVC is the baseline architecture when it comes to Android
development. You'll learn how to identify this architecture and how it became so
commonplace. You'll also be introduced to the sample app, which you'll refactor
into each of the learned architectures.

3. Testing Model View Controller: Learn how to take the most common architecture
and how to make it testable. Learn the pain points of using this architecture.

4. Android Architecture Components: All the way back in May of 2017, Google
introduced its take on how best to architect an Android app. You'll learn all about
the major components that make up the AAC since many of them can be fit to work
with other architectures.

5. Dependency Injection: Dependency Injection is a simple idea that often finds
itself as one of the cornerstones to many app architectures. You'll learn how you can
structure your code to use dependency injection to help with all architectures
presented in this book.

raywenderlich.com 38

6. Model View Presenter Theory: The first of many architectures you'll learn, MVP
(Model View Presenter) is often considered the most natural progression out of
MVC. In this chapter, you'll learn what advantages MVP might have over an MVC
architecture.

7. Model View Presenter Sample: You've learned about MVP, now it's time to
conform the sample app to use it.

8. Testing MVP: Once you've refactored your app to leverage MVP, learn strategies for
MVP architected components.

9. Model-View-ViewModel Theory: MVVM (Model-View-ViewModel) is an
architecture that's gained a lot of attention. It was first presented to specifically
address event-driven programming. In this chapter, you'll gain deep insight into
what makes this architecture so exciting.

10. Model-View-ViewModel Sample with Data Binding: MVVM, at its core, requires
data binding in order to be effective. In this chapter, you'll refactor the sample app
to use MVVM along with Data Binding.

11. Model-View-ViewModel Sample with Android Architecture Components: In
this chapter, you'll learn how to further refactor the sample app to conform to
MVVM; however, this time, you'll learn how to leverage Google's Architecture
Components.

12. Testing Model-View-ViewModel: You've refactored your app, now it's time to find
ways to test it. In this chapter, you'll learn how an MVVM architecture can make
this easier.

13. Unidirectional Theory: Unidirectional architectures build on the idea of data
binding, and turns it up to 11! Most famously, Unidirectional data flow was
popularized by Flux, the app architecture most commonly found in React apps.

14. VIPER Theory: Don't be scared, you won't be wrangling snakes in this chapter.
Instead, you'll learn how the letters of VIPER form the architectural pieces to this
architecture.

15. VIPER Sample: In this chapter, you'll refactor the sample app in to each of the
VIPER components. You'll draw distinct lines of responsibility for each component
and how this architecture can be used to scale your app.

16. Testing VIPER: What good is an architecture if you can't test it. In this chapter,
you'll learn to test each of the VIPER components.

Advanced Android App Architectures Sample Where to Go From Here?

raywenderlich.com 39

17. Model View Intent Theory: MVI (Model View Intent) is commonly known as the
architecture that prevents developers from misusing patterns like MVP or MVVM.
In this chapter, you'll learn the last architecture explored in this book and how
Android makes this architecture really stand out.

18. Model View Intent Sample: You've learned what MVI is, but now you'll learn how
to refactor the sample app into each of the MVI components.

19. Testing Model View Intent: After refactoring your app into MVI, you'll write some
tests to make sure each component is doing exactly as you expect.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/advanced-android-app-architectures

We hope you enjoy the book!

— The Advanced Android App Architectures Team

Advanced Android App Architectures Sample Where to Go From Here?

raywenderlich.com 40

